Skip to main content

Design of a 3D-Printable Powered Prosthetic Hand for Transmetacarpal Amputees

  • Conference paper
  • First Online:
Advances in Automation and Robotics Research in Latin America

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 13))

Abstract

A great number of new proposals for prosthetic hands made by 3D printing have been developed. These prostheses are either body powered for partial hand amputees, or myoelectric powered prostheses for transradial amputees. However, there are no current studies to develop powered 3D printed prostheses for transmetacarpal or partial hand amputees, probably because at this level of amputation there is little space to fit actuators and their associated electronics; nevertheless, it is not an impossible task. For that reason, in this work, it is proposed a design of a hand prosthesis aimed for transmetacarpal amputees and powered by DC micromotors. Additionally, a method for customizing prosthetic fingers to match a user specific anthropometry is shown. Finally, sensors and actuators selection is explained, and a basic control scheme is tested on the prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camacho, H.T.: Años acumulados de vida productiva potencial perdidos en pacientes amputados por accidentes de trabajo: Instituto Nacional de Rehabilitación 2003–2007. Universidad Nacional Mayor de San Marcos, Lima (2010)

    Google Scholar 

  2. e-NABLE: Talon Hand 2.X - Enabling The Future (2015). http://enablingthefuture.org/upper-limb-prosthetics/talon-hand/. Accessed 26 December 2016

  3. e-NABLE: The Flexy Hand and Flexy Hand 2 - Enabling The Future (2015). http://enablingthefuture.org/upper-limb-prosthetics/the-flexy-hand/. Accessed 26 December 2016

  4. Borjas, R., Flores, W.: Developing a human prosthesis using a 3D printer in Honduras. In: IEEE 35th Central American and Panama Convention (CONCAPAN XXXV), Tegucigalpa (2015)

    Google Scholar 

  5. Dally, C., Johnson, D., Canon, M. Ritter, S., Mehta, K.: Characteristics of a 3D-Printed prosthetic hand for use in developing countries. In: IEEE 2015 Global Humanitarian Technology Conference, Seattle (2015)

    Google Scholar 

  6. exiii Inc.: HACKberry Open source community (2006). http://exiii-hackberry.com/. Accessed 26 December 2016

  7. Fajardo, J., Lemus, A., Rohmer, E.: Galileo bionic hand: sEMG actived approaches for a multifunction upper-limb posthetic. In: IEEE 35th Central American and Panama Convention (COPACAN XXXV), Tegucigalpa (2015)

    Google Scholar 

  8. Yoshikawa, M., Sato, R., Higashihara, T., Ogasawara, T., Kawashima, N.: Rehand: realistic electric prosthetic hand created with a 3D printer. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, 2015

    Google Scholar 

  9. Xu, Z., Todorov, E.: Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration. In: IEEE International Conference on Robotics and Automation (ICRA), Stockholm (2016)

    Google Scholar 

  10. Dechev, N., Cleghorn, W., Naumann, S.: Multi-segmented finger design of an experimental prosthetic hand. In: Proceedings of the Sixth National Applied Mechanisms & Robotics Conference, Toronto (1999)

    Google Scholar 

  11. Xu, Z., Kumar, V., Matsuoka, Y., Torodov, E.: Design of an anthropomorphic robotic finger system with biomimetic artificial joints. In: 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Roma (2012)

    Google Scholar 

  12. Ceccarelli, M., Rodríguez, N., Carbone, G., Lopez-Cajùn, C.: An optimal design of driving mechanism in a 1 degree of freedom (d.o.f.) anthropomorphic finger. Appl. Bionics Biomech. 2(2), 103–110 (2004)

    Google Scholar 

  13. Rea, P.: On the design of underactuated finger mechanisms for robotic hands. In: Advances in Mechatronics, Shanghai, InTech 2011, pp. 131–155 (2011)

    Google Scholar 

  14. Liu, H., Meusel, P., Hirzinger, G., Jin, M., Liu, Y., Xie, Z.: The modular multisensory DLR-HIT-Hand: hardware and software architecture. IEEE/ASME Trans. Mechatron. 13(4), 461–469 (2008)

    Article  MATH  Google Scholar 

  15. Kargov, A., Pylatiuk, C., Martin, J., Schulz, S., Döderlein, L.: A comparison of the grip force distribution in natural hands and in prosthetic hands. Disabil. Rehabil. 26(12), 705–711 (2004)

    Article  Google Scholar 

  16. Plooij, M., Mathijssen, G., Cherelle, P., Lefeber, D., Vanderborght, B.: Review of locking devices used in robotics. IEEE Robot. Autom. Mag. 22(1), 106–117 (2015)

    Article  Google Scholar 

  17. Vincent Systems GmbH, “VINCENTevolution 2” (2016). http://vincentsystems.de/en/prosthetics/vincent-evolution-2/. Accessed 6 April 2016

  18. Touch Bionics: i-limb quantum product sheet, Enero 2016. http://www.touchbionics.com/sites/default/files/files/MA01336%20rev%202%20January%202016%20i-limb%20quantum%20product%20sheet_USsize.pdf. Accessed 16 March 2016

  19. Belter, J.T., Segil, J.L., Dollar, A.M., Richard, W.F.: Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev. 50(5), 599–618 (2013)

    Article  Google Scholar 

  20. Frievalds, A.: Biomechanics of the Upper Limbs: Mechanics, Modeling and Muskuloskeletal Injuries, p. 204. CRC Press LLC, Florida (2004)

    Book  Google Scholar 

  21. Hutchinson, A.L., Hutchinson, R.L.: Fibonacci, littler, and the hand: a brief review. Hand 5(4), 364–368 (2010)

    Google Scholar 

  22. Gerruti, G., Chablat, D., Gouaillier, D., Sakka, S.: Design method for an anthropomorphic hand able to gesture and grasp. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, Washington (2015)

    Google Scholar 

  23. Melexis: Melexis, Inpired Engineering. https://www.melexis.com/en. Accessed 25 July 2016

  24. First4Magnets: First4Magnets A Division of Magnet Expert. http://www.first4magnets.com/. Accessed 18 August 2016

  25. Faulhaber: Faulhaber Drive Systems. https://www.faulhaber.com/en/global/. Accessed 15 July 2016

  26. MaxonMotor: DC Motors and Drive Systems by Maxon Motor. http://www.maxonmotor.com/maxon/view/content/index. Accessed 18 August 2016

  27. Test Standard Labs, LLC: ABS Data sheet (2014). http://www.teststandard.com/data_sheets/ABS_Data_sheet.pdf. Accessed 28 December 2016

  28. Toner Plastics: PLA 3D Filament Data Sheet, March 2016. http://toner-plastics.com/wp-content/uploads/2016/04/PLA-3D-Filament-Data-Sheet.pdf. Accessed 28 December 2016

Download references

Acknowledgments

This work was supported by the National Council of Science, Technology and Innovation (CONCYTEC), an entity of the Government of Peru, for a Basic and Applied Research Grant, with grant number 160-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Elías .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mio, R., Ccorimanya, L., Flores, K.M., Salazar, G., Elías, D. (2017). Design of a 3D-Printable Powered Prosthetic Hand for Transmetacarpal Amputees. In: Chang, I., Baca, J., Moreno, H., Carrera, I., Cardona, M. (eds) Advances in Automation and Robotics Research in Latin America. Lecture Notes in Networks and Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-54377-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54377-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54376-5

  • Online ISBN: 978-3-319-54377-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics