Skip to main content

A Modular Robotic System for Assessment and Exercise of Human Movement

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 13))

Abstract

This project targets the problem of developing a wearable modular robotic system (This work was supported by the Peter Kiewit Institute and NASA Nebraska Space Grant.), for assessing human movement and providing different types of exercises for the user. The system attempts to provide not only a variety of exercises (concentric, eccentric, assisted and resisted), but also to assess the change in variability of the movement as the subject shows functional improvement. The system will not only be useful for patients with sensorimotor problems such as stroke, Parkinson’s, cerebral palsy, but also for special populations such as astronauts who spend long periods of time in space and experience muscle atrophy. In this work, a first prototype of a modular robot is presented along with preliminary test results from basic active and passive wrist exercises that show the feasibility of this type of systems for assessment and exercise of human movement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson, C., Mhurchu, C.N., Rubenach, S., Clark, M., Spencer, C., Winsor, A.: Home or hospital for stroke rehabilitation? Results of a randomized controlled trial: II: cost minimization analysis at 6 months. Stroke 31(5), 1032–1037 (2000)

    Article  Google Scholar 

  2. Baca, J., Hossain, S., Dasgupta, P., Nelson, C., Dutta, A.: Modred: hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration. Robot. Auton. Syst. 62(7), 1002–1015 (2013)

    Article  Google Scholar 

  3. Burgar, C.G., Lum, P.S., Shor, P.C., Van der Loos, H.F.M.: Development of robots for rehabilitation therapy: the palo alto va/stanford experience. J. Rehabil. Res. Dev. 37(6), 663–674 (2000)

    Google Scholar 

  4. Carignan, C., Liszka, M.: Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In: 12th International Conference on Advanced Robotics. Institute of Electrical and Electronics Engineers. IEEE (2005)

    Google Scholar 

  5. Fischer, H.C., Triandafilou, K.M., Thielbar, K.O., Ochoa, J.M., Lazzaro, E.D.C., Pacholski, K.A., Kamper, D.G.: Use of a portable assistive glove to facilitate rehabilitation in stroke survivors with severe hand impairment. IEEE Trans. Neural Syst. Rehabil. Eng. 24(3), 344–351 (2016)

    Article  Google Scholar 

  6. Goodman, R.N., Rietschel, J., Barton, J.E., Krebs, H.I., Macko, R.F., Forrester, L.W., Roy, A.: Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation 33, 85–97 (2013)

    Google Scholar 

  7. Gao, F., Ren, Y., Roth, E.J., Harvey, R., Zhang, L.-Q.: Effects of repeated ankle stretching on calf muscle-tendon, ankle biomechanical properties in stroke survivors. Clin. Biomech. 26(5), 516–522 (2011)

    Article  Google Scholar 

  8. Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Blaha, M.J., Dai, S., Ford, E.S., Fox, C.S., Franco, S., Fullerton, H.J., Gillespie, C., Hailpern, S.M., Heit, J.A., Howard, V.J., Huffman, M.D., Judd, S.E., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Mackey, R.H., Magid, D.J., Marcus, G.M., Marelli, A., Matchar, D.B., McGuire, D.K., Mohler, E.R., Moy, C.S., Mussolino, M.E., Neumar, R.W., Nichol, G., Pandey, D.K., Paynter, N.P., Reeves, M.J., Sorlie, P.D., Stein, J., Towfighi, A., Turan, T.N., Virani, S.S., Wong, N.D., Woo, D., Turner, M.B.: Heart disease, stroke statistics-2014 update: a report from the american heart association. Circulation 129(3), e28–e292 (2013)

    Article  Google Scholar 

  9. Gupta, A., O’Malley, M.K.: Robotic exoskeletons for upper extremity rehabilitation. In: Rehabilitation Robotics. InTech (2007)

    Google Scholar 

  10. Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., Lingnau, M.L.: Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36(9), 1960–1966 (2005)

    Article  Google Scholar 

  11. Hossain, S.G.M., Nelson, C.A., Dasgupta, P.: Hardware design and testing of modred a modular self-reconfigurable robot system. In: Proceedings of ASME/IEEE International Conference on Reconfigurable Mechanisms and Robots (2012)

    Google Scholar 

  12. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)

    Article  Google Scholar 

  13. Krebs, H.I., Volpe, B.T., Williams, D., Celestino, J., Charles, S.K., Lynch, D., Hogan, N.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327–335 (2007)

    Article  Google Scholar 

  14. Lee, S., Kim, C.: Development of a robot-aided neuromuscular rehabilitation method using perturbing forces. In: IEEE International Symposium on Robotics, Institute of Electrical and Electronics Engineers. IEEE (2013)

    Google Scholar 

  15. Loureiro, R., Amirabdollahian, F., Topping, M., Driessen, B., William, H.: Upper limb robot mediated stroke therapy-gentle/s approach. Auton. Robots 15(1), 35–51 (2003)

    Article  Google Scholar 

  16. Lynch, D., Ferraro, M., Krol, J., Trudell, C.M., Christos, P., Volpe, B.T.: Continuous passive motion improves shoulder joint integrity following stroke. Clin. Rehabil. 19(6), 594–599 (2005)

    Article  Google Scholar 

  17. Nef, T., Guidali, M., Riener, R.: Armin iii - arm therapy exoskeleton with an ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), 127–142 (2009)

    Article  Google Scholar 

  18. Nef, T., Mihelj, M., Riener, R.: Armin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 45(9), 887–900 (2007)

    Article  Google Scholar 

  19. O’Dell, M.W., Lin, C.-C.D., Harrison, V.: Stroke rehabilitation: strategies to enhance motor recovery. Annu. Rev. Med. 60(1), 55–68 (2009)

    Article  Google Scholar 

  20. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. NeuroEngineering Rehabil. 9(1), 21 (2012)

    Article  Google Scholar 

  21. Ren, Y., Kang, S.H., Park, H.-S., Wu, Y.-N., Zhang, L.-Q.: Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 21(3), 490–499 (2013)

    Article  Google Scholar 

  22. Riener, R., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 43(1), 2–10 (2005)

    Article  Google Scholar 

  23. Sanchez, R.J., Liu, J., Rao, S., Shah, P., Smith, R., Rahman, T., Cramer, S.C., Bobrow, J.E., Reinkensmeyer, D.J.: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans. Neural Syst. Rehabil. Eng. 14(3), 378–389 (2006)

    Article  Google Scholar 

  24. Seel, T., Raisch, J., Schauer, T.: IMU-based joint angle measurement for gait analysis. Sensors 14(4), 6891–6909 (2014)

    Article  Google Scholar 

  25. Selles, R.W., Li, X., Lin, F., Chung, S.G., Roth, E.J., Zhang, L.-Q.: Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch. Phys. Med. Rehabil. 86(12), 2330–2336 (2005)

    Article  Google Scholar 

  26. Stein, J., Bishop, L., Gillen, G., Helbok, R.: A pilot study of robotic-assisted exercise for hand weakness after stroke. In: International Conference on Rehabilitation Robotics. Institute of Electrical and Electronics Engineers (IEEE), June 2011

    Google Scholar 

  27. Wang, C., Lu, Z., Wang, Y., Li, M., Duan, L., Shen, Y., Wei, J., Shi, Q., Zecca, M., Li, W., Wu, Z.: Development of a rehabilitation robot for hand and wrist rehabilitation training. In: 2015 IEEE International Conference on Information and Automation. Institute of Electrical and Electronics Engineers. IEEE, August 2015

    Google Scholar 

  28. Wu, Y.-N., Hwang, M., Ren, Y., Gaebler-Spira, D., Zhang, L.-Q.: Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabilitation Neural Repair 25(4), 378–385 (2011)

    Article  Google Scholar 

  29. Yang, W., Yang, C.J., Wei, Q.X.: Design of an anthropomorphic lower extremity exoskeleton with compatible joints. In: IEEE International Conference on Robotics and Biomimetics. Institute of Electrical and Electronics Engineers. IEEE, December 2014

    Google Scholar 

  30. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  Google Scholar 

  31. Yurkewich, A., Atashzar, S.F., Ayad, A., Patel, R.V.: A six-degree-of-freedom robotic system for lower extremity rehabilitation. In: IEEE International Conference on Rehabilitation Robotics. Institute of Electrical and Electronics Engineers. IEEE, August 2015

    Google Scholar 

  32. Zhang, F., Fu, Y., Wang, T., Zhang, Q., Wang, S., Guo, B.: Research on sensing and measuring system for a hand rehabilitation robot. In: 2013 IEEE International Conference on Robotics and Biomimetics. Institute of Electrical and Electronics Engineers. IEEE, December 2013

    Google Scholar 

  33. Zhang, L.-Q., Chung, S.G., Bai, Z., Xu, D., van Rey, E.M.T., Rogers, M.W., Johnson, M.E., Roth, E.J.: Intelligent stretching of ankle joints with contracture, spasticity. IEEE Trans. Neural Syst. Rehabil. Eng. 10(3), 149–157 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Baca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baca, J., Ambati, M.S., Dasgupta, P., Mukherjee, M. (2017). A Modular Robotic System for Assessment and Exercise of Human Movement. In: Chang, I., Baca, J., Moreno, H., Carrera, I., Cardona, M. (eds) Advances in Automation and Robotics Research in Latin America. Lecture Notes in Networks and Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-54377-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54377-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54376-5

  • Online ISBN: 978-3-319-54377-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics