Skip to main content

Chimeric Antigen Receptor T Cells for Leukemias in Children: Methods, Data, and Challenges

  • Chapter
  • First Online:
Cell and Gene Therapies

Abstract

The past few decades have brought enormous improvements in the cure rates of childhood acute leukemia; about 85% of all children with newly diagnosed acute lymphoblastic leukemia (ALL) and 50–60% with acute myeloid leukemia (AML) experience long-term disease control after multimodal treatments that often include intensified chemotherapy. Relapsed leukemia patients pose a challenging subset of the pediatric leukemic population due to highly resistant disease and, very often, underlying organ dysfunction, calling for development of novel therapeutic approaches and innovative strategies with the power to kill refractory leukemic cells. Advanced laboratory technologies have provided fresh insights into mechanisms of relapse and leukemic cell evolution. Newer formulations of older drugs, antibody-based therapies, and molecularly targeted agents are some of the current strategies under investigation for treatment of relapsed ALL. Whole-genome sequencing has allowed characterization of the transcriptional profile of the leukemic cell, facilitating targeted therapy and leading us one step closer to precision medicine. In this rapidly evolving “race” for better and nontoxic treatments, we find ourselves in an era of the new “CARs”—chimeric antigen receptor(s)—that are defining a role for immunotherapy in childhood cancers of which one was recently approved by US Food and Drug Administration for the treatment of patients up to age 25 years with B-cell precursor acute lymphoblastic leukemia (ALL) who are refractory or in second or later relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrett DM, Singh N, Porter DL, Grupp SA, June CH (2014a) Chimeric antigen receptor therapy for cancer. Annu Rev Med 65:333–347

    Article  CAS  Google Scholar 

  • Barrett DM, Singh N, Liu X, Jiang S, June CH, Grupp SA et al (2014b) Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy 16(5):619–630

    Article  CAS  Google Scholar 

  • Bhojwani D, Pui CH (2013) Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol 14(6):e205–e217

    Article  Google Scholar 

  • Brentjens RJ, Curran KJ (2012) Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematology Am Soc Hematol Educ Program 2012:143–151

    PubMed  PubMed Central  Google Scholar 

  • Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K et al (2007) Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 13(18 Pt 1):5426–5435

    Article  CAS  Google Scholar 

  • Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18):4817–4828

    Article  CAS  Google Scholar 

  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38

    Article  Google Scholar 

  • Brudno JN, Kochenderfer JN (2016) Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127(26):3321–3330

    Article  CAS  Google Scholar 

  • Campana D, Schwarz H, Imai C (2014) 4-1BB chimeric antigen receptors. Cancer J 20(2):134–140

    Article  CAS  Google Scholar 

  • Chen F, Teachey DT, Pequignot E, Frey N, Porter D, Maude SL et al (2016) Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods 434:1–8

    Article  CAS  Google Scholar 

  • Cho BK, Rao VP, Ge Q, Eisen HN, Chen J (2000) Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 192(4):549–556

    Article  CAS  Google Scholar 

  • Cui Y, Zhang H, Meadors J, Poon R, Guimond M, Mackall CL (2009) Harnessing the physiology of lymphopenia to support adoptive immunotherapy in lymphoreplete hosts. Blood 114(18):3831–3840

    Article  CAS  Google Scholar 

  • Davila ML, Brentjens R, Wang X, Riviere I, Sadelain M (2012) How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology 1(9):1577–1583

    Article  Google Scholar 

  • Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra25

    Article  Google Scholar 

  • Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26(32):5233–5239

    Article  CAS  Google Scholar 

  • Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL et al (2014) Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123(15):2343–2354

    Article  CAS  Google Scholar 

  • Goldrath AW, Bogatzki LY, Bevan MJ (2000) Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 192(4):557–564

    Article  CAS  Google Scholar 

  • Gore L, Zugmaier G, Handgretinger R, Locatelli F, Trippett TM, Rheingold SR, et al (eds) (2013) Cytological and molecular remissions with blinatumomab treatment in second or later bone marrow relapse in pediatric acute lymphoblastic leukemia (ALL). ASCO Annual Meeting Proceedings

    Google Scholar 

  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  Google Scholar 

  • Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH et al (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121(7):1165–1174

    Article  CAS  Google Scholar 

  • Health UDo, Services H. National Cancer Institute. Common terminology criteria for adverse events (CTCAE). Version v4. 03. 2012

    Google Scholar 

  • Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ et al (2012) Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the Children’s Oncology Group. J Clin Oncol 30(14):1663–1669

    Article  Google Scholar 

  • Jeha S, Gaynon PS, Razzouk BI, Franklin J, Kadota R, Shen V et al (2006) Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol 24(12):1917–1923

    Article  CAS  Google Scholar 

  • June CH, Maus MV, Plesa G, Johnson LA, Zhao Y, Levine BL et al (2014) Engineered T cells for cancer therapy. Cancer Immunol Immunother 63(9):969–975

    Article  CAS  Google Scholar 

  • Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJ et al (2015) CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 29(8):1637–1647

    Article  CAS  Google Scholar 

  • Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26(2):111–117

    Article  CAS  Google Scholar 

  • Klinger M, Brandl C, Zugmaier G, Hijazi Y, Bargou RC, Topp MS et al (2012) Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 119(26):6226–6233

    Article  CAS  Google Scholar 

  • Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124(2):188–195

    Article  CAS  Google Scholar 

  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528

    Article  CAS  Google Scholar 

  • Loren AW, Porter DL (2008) Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant 41(5):483–493

    Article  CAS  Google Scholar 

  • Maude S, Barrett DM (2016) Current status of chimeric antigen receptor therapy for haematological malignancies. Br J Haematol 172(1):11–22

    Article  CAS  Google Scholar 

  • Maude SL, Tasian SK, Vincent T, Hall JW, Sheen C, Roberts KG et al (2012) Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 120(17):3510–3518

    Article  CAS  Google Scholar 

  • Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014a) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  Google Scholar 

  • Maude SL, Barrett D, Teachey DT, Grupp SA (2014b) Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 20(2):119–122

    Article  CAS  Google Scholar 

  • Maude SL, Teachey DT, Porter DL, Grupp SA (2015) CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125(26):4017–4023

    Article  CAS  Google Scholar 

  • Maude SL, Teachey DT, Rheingold SR, Shaw PA, Aplenc R, Barrett DM et al (2016) Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. Am Soc Clin Oncol 34(15_suppl):3011

    Article  Google Scholar 

  • Maus MV, Grupp SA, Porter DL, June CH (2014) Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123(17):2625–2635

    Article  CAS  Google Scholar 

  • Mihm MC Jr, Clemente CG, Cascinelli N (1996) Tumor infiltrating lymphocytes in lymph node melanoma metastases: a histopathologic prognostic indicator and an expression of local immune response. Lab Investig 74(1):43–47

    PubMed  Google Scholar 

  • Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17(8):1453–1464

    Article  CAS  Google Scholar 

  • Nakazawa Y, Matsuda K, Kurata T, Sueki A, Tanaka M, Sakashita K et al (2016) Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34(+) cells of juvenile myelomonocytic leukemia. J Hematol Oncol 9:27

    Article  Google Scholar 

  • Pegram HJ, Park JH, Brentjens RJ (2014) CD28z CARs and armored CARs. Cancer J 20(2):127–133

    Article  CAS  Google Scholar 

  • Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139

    Article  Google Scholar 

  • Rambaldi A, Biagi E, Bonini C, Biondi A, Introna M (2015) Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches. Leukemia 29(1):1–10

    Article  CAS  Google Scholar 

  • Rheingold SR, Chen LN, Maude SL, Aplenc R, Barker C, Barrett DM et al (2015) Efficient trafficking of Chimeric Antigen Receptor (CAR)-modified T cells to CSF and induction of durable CNS remissions in children with CNS/combined relapsed/refractory ALL. Blood 126(23):3769

    Google Scholar 

  • Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al (2012) Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22(2):153–166

    Article  CAS  Google Scholar 

  • Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B et al (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3(8):e163

    Article  Google Scholar 

  • Sander A, Zimmermann M, Dworzak M, Fleischhack G, von Neuhoff C, Reinhardt D et al (2010) Consequent and intensified relapse therapy improved survival in pediatric AML: results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia 24(8):1422–1428

    Article  CAS  Google Scholar 

  • Schlegel P, Lang P, Zugmaier G, Ebinger M, Kreyenberg H, Witte KE et al (2014) Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica 99(7):1212–1219

    Article  Google Scholar 

  • Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB et al (2014) Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 28(7):1467–1471

    Article  CAS  Google Scholar 

  • Seif AE, Barrett DM, Milone M, Brown VI, Grupp SA, Reid GS (2009) Long-term protection from syngeneic acute lymphoblastic leukemia by CpG ODN-mediated stimulation of innate and adaptive immune responses. Blood 114(12):2459–2466

    Article  CAS  Google Scholar 

  • Swann JB, Smyth MJ (2007) Immune surveillance of tumors. J Clin Investig 117(5):1137–1146

    Article  CAS  Google Scholar 

  • Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE et al (2013) Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121(26):5154–5157

    Article  CAS  Google Scholar 

  • Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N et al (2016) Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Cancer Discov 6(6):664–679

    Article  CAS  Google Scholar 

  • Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG et al (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119(17):3940–3950

    Article  CAS  Google Scholar 

  • Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S et al (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29(18):2493–2498

    Article  CAS  Google Scholar 

  • Wang E, Wang LC, Tsai CY, Bhoj V, Gershenson Z, Moon E et al (2015) Generation of potent T-cell immunotherapy for cancer using DAP12-based, multichain, chimeric immunoreceptors. Cancer Immunol Res 3(7):815–826

    Article  CAS  Google Scholar 

  • Wu Z, Bensinger SJ, Zhang J, Chen C, Yuan X, Huang X et al (2004) Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med 10(1):87–92

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala K. Talekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talekar, M.K., Grupp, S.A. (2019). Chimeric Antigen Receptor T Cells for Leukemias in Children: Methods, Data, and Challenges. In: Perales, MA., Abutalib, S., Bollard, C. (eds) Cell and Gene Therapies. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-54368-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54368-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54367-3

  • Online ISBN: 978-3-319-54368-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics