Skip to main content

Brief Overview of Stochastic Solvers for the Propagation of Uncertainties

  • Chapter
  • First Online:
Uncertainty Quantification

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 47))

  • 4050 Accesses

Abstract

The course is focused on the stochastic modeling of uncertainties and their identification by solving statistical inverse problems. The course is not devoted to the mathematical developments related to the stochastic solvers (there are many textbooks devoted to this subject). In this context, this chapter is limited to a list of principal approaches and to a brief description of the Galerkin method (spectral approach) and to the Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnst M, Ghanem R, Soize C. Identification of Bayesian posteriors for coefficients of chaos expansion, Journal of Computational Physics, 229 (9), 3134–3154 (2010) doi:10.1016/j.jcp.2009.12.033.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnst M, Soize C, Ghanem R. Hybrid sampling/spectral method for solving stochastic coupled problems, SIAM/ASA Journal on Uncertainty Quantification, 1 (1), 218–243 (2013) doi:10.1137/120894403.

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnst M, Ghanem R, Phipps E, Red-Horse J. Reduced chaos expansions with random coefficients in reduced-dimensional stochastic modeling of coupled problems, International Journal for Numerical Methods in Engineering, 29 (5), 352–376 (2014) doi:10.1002/nme.4595.

    Article  MathSciNet  MATH  Google Scholar 

  4. Au SK, Beck JL. Subset simulation and its application to seismic risk based on dynamic analysis, Journal of Engineering Mechanics - ASCE, 129 (8), 901–917 (2003) doi:10.1061/(ASCE)0733-9399(2003)129:8(901).

    Article  Google Scholar 

  5. Au SK, Beck JL. Important sampling in high dimensions, Structural Safety, 25 (2), 139–163 (2003) doi:10.1016/S0167-4730(02)00047-4.

    Article  Google Scholar 

  6. Babuska I, Nobile F, Tempone R. A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Journal on Numerical Analysis, 45 (3), 1005–1034 (2007) doi:10.1137/050645142.

    Article  MathSciNet  MATH  Google Scholar 

  7. Berveiller M, Sudret B, Lemaire M. Stochastic finite elements: A non intrusive approach by regression, European Journal of Computational Mechanics, 15 (1–3), 81–92 (2006) doi:10.3166/remn.15.81–92.

    Google Scholar 

  8. Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, 230 (6), 2345–2367 (2011) doi:10.1016/j.jcp.2010.12.021.

    Article  MathSciNet  MATH  Google Scholar 

  9. Das S, Ghanem R, Spall J. Asymptotic sampling distribution for polynomial chaos representation of data: A maximum-entropy and fisher information approach, SIAM Journal on Scientific Computing, 30 (5), 2207–2234 (2008) doi:10.1137/060652105.

    Article  MathSciNet  MATH  Google Scholar 

  10. Debusschere BJ, Najm HN, Pebay PP, Knio OM, Ghanem R, Le Maitre OP. Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM Journal on Scientific Computing, 26 (2), 698–719 (2004) doi:10.1137/S1064827503427741.

    Article  MathSciNet  MATH  Google Scholar 

  11. Desceliers C, Ghanem R., Soize C. Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, 66 (6), 978–1001 (2006) doi:10.1002/nme.1576.

    Article  MathSciNet  MATH  Google Scholar 

  12. Doostan A, Ghanem R, Red-Horse J. Stochastic model reduction for chaos representations, Computer Methods in Applied Mechanics and Engineering, 196 (37–40), 3951–3966 (2007) doi:10.1016/j.cma.2006.10.047.

    Article  MathSciNet  MATH  Google Scholar 

  13. Doostan A, Owhadi H. A non-adapted sparse approximation of PDEs with stochastic inputs, Journal of Computational Physics, 230 (8), 3015–3034 (2011) doi:10.1016/j.jcp.2011.01.002.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ernst OG, Mugler A, Starkloff HJ, Ullmann E. On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis, 46 (2), 317–339 (2012) doi:10.1051/m2an/2011045.

    Article  MathSciNet  MATH  Google Scholar 

  15. Frauenfelder P, Schwab C, Todor RA. Finite elements for elliptic problems with stochastic coefficients, Computer Methods in Applied Mechanics and Engineering, 194 (2–5), 205–228 (2005) doi:10.1016/j.cma.2004.04.008.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ganapathysubramanian B, Zabaras N. Sparse grid collocation schemes for stochastic natural convection problems, Journal of Computational Physics, 25 (1), 652–685 (2007) doi:10.1016/j.jcp.2006.12.014.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements, Journal of Applied Mechanics - Transactions of the ASME, 57 (1), 197–202 (1990) doi:10.1115/1.2888303.

    Article  MATH  Google Scholar 

  18. Ghanem R, Spanos PD. Stochastic Finite Elements: A spectral Approach, Springer-Verlag, New-York, 1991 (revised edition, Dover Publications, New York, 2003).

    Google Scholar 

  19. Ghanem R, Kruger RM. Numerical solution of spectral stochastic finite element systems, Computer Methods in Applied Mechanics and Engineering, 129 (3), 289–303 (1996) doi:10.1016/0045-7825(95)00909-4.

    Article  MATH  Google Scholar 

  20. Ghanem R, Doostan R, Red-Horse J. A probabilistic construction of model validation, Computer Methods in Applied Mechanics and Engineering, 197 (29–32), 2585–2595 (2008) doi:10.1016/j.cma.2007.08.029.

    Article  MATH  Google Scholar 

  21. Ghosh D, Ghanem R. Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions, International Journal for Numerical Methods in Engineering, 73 (2), 162–184 (2008) doi:10.1002/nme.2066.

    Article  MathSciNet  MATH  Google Scholar 

  22. Keshavarzzadeh V, Ghanem R, Masri SF, Aldraihem OJ. Convergence acceleration of polynomial chaos solutions via sequence transformation, Computer Methods in Applied Mechanics and Engineering, 271, 167–184 (2014) doi:10.1016/j.cma.2013.12.003.

    Article  MathSciNet  MATH  Google Scholar 

  23. Le Maitre OP, Knio OM. Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics, Springer, Heidelberg, 2010.

    Book  MATH  Google Scholar 

  24. Lucor D, Su CH, Karniadakis GE. Generalized polynomial chaos and random oscillators, International Journal for Numerical Methods in Engineering, 60 (3), 571–596 (2004) doi:10.1002/nme.976.

    Article  MathSciNet  MATH  Google Scholar 

  25. Marzouk YM, Najm HN. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics, 228 (6), 1862–1902 (2009) doi:10.1016/j.jcp.2008.11.024.

    Article  MathSciNet  MATH  Google Scholar 

  26. Matthies HG, Keese A. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, 194 (12–16), 1295–1331 (2005) doi:10.1016/j.cma.2004.05.027.

    Article  MathSciNet  MATH  Google Scholar 

  27. Najm HN. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Journal Review of Fluid Mechanics, 41, 35–52 (2009) doi:10.1146/annurev.fluid.010908.165248.

    Article  MathSciNet  MATH  Google Scholar 

  28. Nouy A. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, 196 (45–48), 4521–4537 (2007) doi:10.1016/j.cma.2007.05.016.

    Article  MathSciNet  MATH  Google Scholar 

  29. Nouy A. Proper Generalized Decomposition and separated representations for the numerical solution of high dimensional stochastic problems, Archives of Computational Methods in Engineering, 17 (4), 403–434 (2010) 10.1007/s11831-010-9054-1.

    Article  MathSciNet  MATH  Google Scholar 

  30. Nouy A, Soize C. Random fields representations for stochastic elliptic boundary value problems and statistical inverse problems, European Journal of Applied Mathematics, 25 (3), 339–373 (2014) doi:10.1017/S0956792514000072.

    Article  MathSciNet  MATH  Google Scholar 

  31. Perrin G, Soize C, Duhamel D, Funfschilling C. Identification of polynomial chaos representations in high dimension from a set of realizations, SIAM Journal on Scientific Computing, 34 (6), A2917–A2945 (2012) doi:10.1137/11084950X.

    Article  MathSciNet  MATH  Google Scholar 

  32. Pradlwarter HJ, Schueller GI. Local domain Monte Carlo simulation, Structural Safety, 32 (5), 275–280 (2010) doi:10.1016/j.strusafe.2010.03.009.

    Article  Google Scholar 

  33. Rubinstein RY, Kroese DP. Simulation and Monte Carlo method, Second Edition, John Wiley & Sons, Hoboken, New Jersey, 2008.

    Google Scholar 

  34. Schueller GI. Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis, recent advances, Structural Engineering and Mechanics, 32 (1), 1–20 (2009) doi:10.12989/sem.2009.32.1.001.

    Google Scholar 

  35. Soize C, Ghanem R. Physical systems with random uncertainties: Chaos representation with arbitrary probability measure, SIAM Journal on Scientific Computing, 26 (2), 395–410 (2004) doi:10.1137/S1064827503424505.

    Article  MathSciNet  MATH  Google Scholar 

  36. Soize C, Ghanem R. Reduced chaos decomposition with random coefficients of vector-valued random variables and random fields, Computer Methods in Applied Mechanics and Engineering, 198 (21–26), 1926–1934 (2009) doi:10.1016/j.cma.2008.12.035.

    Article  MathSciNet  MATH  Google Scholar 

  37. Soize C. Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods in Applied Mechanics and Engineering, 199 (33–36), 2150–2164 (2010) doi:10.1016/j.cma.2010.03.013.

    Article  MathSciNet  MATH  Google Scholar 

  38. Soize C. Polynomial chaos expansion of a multimodal random vector, SIAM/ASA Journal on Uncertainty Quantification, 3 (1), 34–60 (2015) doi:10.1137/140968495.

    Article  MathSciNet  MATH  Google Scholar 

  39. Sudret B. Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety, 93 (7), 964–979 (2008) doi:10.1016/j.ress.2007.04.002.

    Article  Google Scholar 

  40. Tipireddy R, Ghanem R. Basis adaptation in homogeneous chaos spaces, Journal of Computational Physics, 259, 304–317 (2014) doi:10.1016/j.jcp.2013.12.009.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wan XL, Karniadakis GE. Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM Journal on Scientific Computing, 28 (3), 901–928 (2006) doi:10.1137/050627630.

    Article  MathSciNet  MATH  Google Scholar 

  42. Xiu DB, Karniadakis GE. Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, 24 (2), 619–644 (2002) doi:10.1137/S1064827501387826.

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiu DB. Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, 2010.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soize, C. (2017). Brief Overview of Stochastic Solvers for the Propagation of Uncertainties. In: Uncertainty Quantification. Interdisciplinary Applied Mathematics, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-54339-0_6

Download citation

Publish with us

Policies and ethics