Skip to main content

Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media

  • Chapter
  • First Online:
Uncertainty Quantification

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 47))

  • 4076 Accesses

Abstract

The statistical inverse problem for the experimental identification of a non-Gaussian matrix-valued random field that is the model parameter of a boundary value problem, using some partial and limited experimental data related to a model observation, is a very difficult and challenging problem. A complete advanced methodology is presented and is based on the use of all the developments presented in the previous chapters and in particular, the random matrix theory (Chapter  5 ), the stochastic solvers (Chapters  4 and  6 ), the statistical inverse methods (Chapter  7 ). However, we will start this chapter by presenting new mathematical results concerning the random fields and their polynomial chaos representations, which constitute the extension in infinite dimension of the tools presented in Sections  5.5 to  5.7 for the finite dimension, and which are necessary for solving the statistical inverse problems related to the non-Gaussian random fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnst M, Ghanem R, Soize C. Identification of Bayesian posteriors for coefficients of chaos expansion, Journal of Computational Physics, 229 (9), 3134–3154 (2010) doi:10.1016/j.jcp.2009.12.033.

    Article  MathSciNet  MATH  Google Scholar 

  2. Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, 230 (6), 2345–2367 (2011) doi:10.1016/j.jcp.2010.12.021.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cameron RH, Martin WT. The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Annals of Mathematics, Second Series, 48 (2), 385–392 (1947) doi:10.2307/1969178.

    Article  MathSciNet  MATH  Google Scholar 

  4. Censor Y. Pareto optimality in multiobjective problems, Applied Mathematics and Optimization, 4 (1), 41–59 (1977) doi:10.1007/BF01442131.

    Article  MathSciNet  MATH  Google Scholar 

  5. Clément A, Soize C, Yvonnet J. Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis, International Journal for Numerical Methods in Engineering, 91 (8), 799–824 (2012) doi:10.1002/nme.4293.

    Article  Google Scholar 

  6. Clément A, Soize C, Yvonnet J. Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials, Computer Methods in Applied Mechanics and Engineering, 254, 61–82 (2013) doi:10.1016/j.cma.2012.10.016.

    Article  MathSciNet  MATH  Google Scholar 

  7. Das S, Ghanem R, Spall J. Asymptotic sampling distribution for polynomial chaos representation of data: A maximum-entropy and fisher information approach, SIAM Journal on Scientific Computing, 30 (5), 2207–2234 (2008) doi:10.1137/060652105.

    Article  MathSciNet  MATH  Google Scholar 

  8. Das S, Ghanem R, Finette S. Polynomial chaos representation of spatio-temporal random field from experimental measurements, Journal of Computational Physics, 228, 8726–8751 (2009) doi:10.1016/j.jcp.2009.08.025.

    Article  MathSciNet  MATH  Google Scholar 

  9. Deb K. Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chichester, 2001.

    MATH  Google Scholar 

  10. Debusschere BJ, Najm HN, Pebay PP, Knio OM, Ghanem R, Le Maitre OP. Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM Journal on Scientific Computing, 26 (2), 698–719 (2004) doi:10.1137/S1064827503427741.

    Article  MathSciNet  MATH  Google Scholar 

  11. Desceliers C, Ghanem R., Soize C. Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, 66 (6), 978–1001 (2006) doi:10.1002/nme.1576.

    Article  MathSciNet  MATH  Google Scholar 

  12. Desceliers C, Soize C, Ghanem R. Identification of chaos representations of elastic properties of random media using experimental vibration tests, Computational Mechanics, 39 (6), 831–838 (2007) doi:10.1007/s00466-006-0072-7.

    Article  MATH  Google Scholar 

  13. Doostan A, Ghanem R, Red-Horse J. Stochastic model reduction for chaos representations, Computer Methods in Applied Mechanics and Engineering, 196 (37–40), 3951–3966 (2007) doi:10.1016/j.cma.2006.10.047.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ernst OG, Mugler A, Starkloff HJ, Ullmann E. On the convergence of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical Analysis, 46 (2), 317–339 (2012) doi:10.1051/m2an/2011045.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements, Journal of Applied Mechanics - Transactions of the ASME, 57 (1), 197–202 (1990) doi:10.1115/1.2888303.

    Article  MATH  Google Scholar 

  16. Ghanem R, Spanos PD. Stochastic Finite Elements: A spectral Approach, Springer-Verlag, New-York, 1991 (revised edition, Dover Publications, New York, 2003).

    Google Scholar 

  17. Ghanem R, Doostan R, Red-Horse J. A probabilistic construction of model validation, Computer Methods in Applied Mechanics and Engineering, 197 (29–32), 2585–2595 (2008) doi:10.1016/j.cma.2007.08.029.

    Article  MATH  Google Scholar 

  18. Ghosh D, Ghanem R. Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions, International Journal for Numerical Methods in Engineering, 73 (2), 162–184 (2008) doi:10.1002/nme.2066.

    Article  MathSciNet  MATH  Google Scholar 

  19. Guilleminot J, Soize C, Kondo D, Binetruy C. Theoretical framework and experimental procedure for modelling volume fraction stochastic fluctuations in fiber reinforced composites, International Journal of Solid and Structures, 45 (21), 5567–5583 (2008) doi:10.1016/j.ijsolstr.2008.06.002.

    Article  MATH  Google Scholar 

  20. Guilleminot J, Soize C, Kondo D. Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: experimental identification and numerical aspects, Mechanics of Materials, 41 (12), 1309–1322 (2009) doi:10.1016/j.mechmat.2009. 08.004.

    Article  Google Scholar 

  21. Guilleminot J, Soize C. A stochastic model for elasticity tensors with uncertain material symmetries, International Journal of Solids and Structures, 47 (22–23), 3121–3130 (2010) doi:10.1016/j.ijsolstr.2010.07.013.

    Article  MATH  Google Scholar 

  22. Guilleminot J, Noshadravan A, Soize C, Ghanem R. A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Computer Methods in Applied Mechanics and Engineering, 200 (17–20), 1637–1648 (2011) doi:10.1016/j.cma.2011.01.016.

    Article  MathSciNet  MATH  Google Scholar 

  23. Guilleminot J, Soize C. Generalized stochastic approach for constitutive equation in linear elasticity: A random matrix model, International Journal for Numerical Methods in Engineering, 90 (5),613–635 (2012) doi:10.1002/nme.3338.

    Article  MathSciNet  MATH  Google Scholar 

  24. Guilleminot J, Soize C. Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media, Multiscale Modeling and Simulation (A SIAM Interdisciplinary Journal), 11 (3), 840–870 (2013) doi:10.1137/120898346.

    Article  MathSciNet  MATH  Google Scholar 

  25. Guilleminot J, Soize C. On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties, Journal of Elasticity, 111 (2), 109–130 (2013) doi 10.1007/s10659-012-9396-z.

    Article  MathSciNet  MATH  Google Scholar 

  26. Le TT. Stochastic modeling in continuum mechanics of the inclusion-matrix interphase from molecular dynamics simulations (in French: Modélisation stochastique, en mécanique des milieux continus, de l’interphase inclusion-matrice à partir de simulations en dynamique moléculaire), Thèse de doctorat de l’Université Paris-Est, Marne-la-Vallée, France, 2015.

    Google Scholar 

  27. Le TT, Guilleminot J, Soize C. Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite, Computer Methods in Applied Mechanics and Engineering, 303, 430–449 (2016) doi:10.1016/j.cma.2015.10.006.

    Article  MathSciNet  Google Scholar 

  28. Le Maitre OP, Knio OM, Najm HN. Uncertainty propagation using Wiener-Haar expansions, Journal of Computational Physics, 197 (1), 28–57 (2004) doi:10.1016/j.jcp.2003.11.033.

    Article  MathSciNet  MATH  Google Scholar 

  29. Le Maitre OP, Knio OM. Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics, Springer, Heidelberg, 2010.

    Book  MATH  Google Scholar 

  30. Lucor D, Su CH, Karniadakis GE. Generalized polynomial chaos and random oscillators, International Journal for Numerical Methods in Engineering, 60 (3), 571–596 (2004) doi:10.1002/nme.976.

    Article  MathSciNet  MATH  Google Scholar 

  31. Najm HN. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Journal Review of Fluid Mechanics, 41, 35–52 (2009) doi:10.1146/annurev.fluid.010908.165248.

    Article  MathSciNet  MATH  Google Scholar 

  32. Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials, Second revised edition, Elsevier, Amsterdam, 1999.

    MATH  Google Scholar 

  33. Nguyen MT. Multiscale identification of the apparent random elasticity field of heterogeneous microstructures. Application to a biological tissue (in French: Identification multi-échelle du champ d’élasticité apparent stochastique de microstructures hétérogènes. Application à un tissu biologique), Thèse de doctorat de l’Université Paris-Est, Marne-la-Vallée, France, 2013.

    Google Scholar 

  34. Nguyen MT, Desceliers C, Soize C, Allain JM, Gharbi H. Multiscale identification of the random elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations, International Journal for Multiscale Computational Engineering, 13 (4), 281–295 (2015) doi:10.1615/IntJMultCompEng.2015011435.

    Article  Google Scholar 

  35. Nguyen MT, Allain JM, Gharbi H, Desceliers C, Soize C. Experimental multiscale measurements for the mechanical identification of a cortical bone by digital image correlation, Journal of the Mechanical Behavior of Biomedical Materials, 63, 125–133 (2016) doi:10.1016/j.jmbbm.2016.06.011.

    Article  Google Scholar 

  36. Nouy A. Proper Generalized Decomposition and separated representations for the numerical solution of high dimensional stochastic problems, Archives of Computational Methods in Engineering, 17 (4), 403–434 (2010) 10.1007/s11831-010-9054-1.

    Article  MathSciNet  MATH  Google Scholar 

  37. Nouy A, Soize C. Random fields representations for stochastic elliptic boundary value problems and statistical inverse problems, European Journal of Applied Mathematics, 25 (3), 339–373 (2014) doi:10.1017/S0956792514000072.

    Article  MathSciNet  MATH  Google Scholar 

  38. Perrin G, Soize C, Duhamel D, Funfschilling C. Identification of polynomial chaos representations in high dimension from a set of realizations, SIAM Journal on Scientific Computing, 34 (6), A2917–A2945 (2012) doi:10.1137/11084950X.

    Article  MathSciNet  MATH  Google Scholar 

  39. Perrin G, Soize C, Duhamel D, Funfschilling C. Karhunen-Loève expansion revisited for vector-valued random fields: scaling, errors and optimal basis, Journal of Computational Physics, 242 (1), 607–622 (2013) doi:10.1016/j.jcp.2013.02.036.

    Article  MathSciNet  MATH  Google Scholar 

  40. Poirion F, Soize C. Numerical simulation of homogeneous and inhomogeneous Gaussian stochastic vector fields, La Recherche Aérospatiale (English edition), 1, 41–61 (1989).

    Google Scholar 

  41. Poirion F, Soize C. Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous Gaussian vector fields, pp. 17–53, in Probabilistic Methods in Applied Physics, edited by P. Krée and W. Wedig, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  42. Puig B, Poirion F, Soize C. Non-Gaussian simulation using Hermite polynomial expansion: Convergences and algorithms, Probabilistic Engineering Mechanics, 17 (3), 253–264 (2002) doi:10.1016/S0266-8920(02)00010-3.

    Article  Google Scholar 

  43. Shinozuka M. Simulations of multivariate and multidimensional random processes. Journal of Acoustical Society of America, 39 (1), 357–367 (1971) doi:10.1121/1.1912338.

    Article  Google Scholar 

  44. Soize C, Ghanem R. Physical systems with random uncertainties: Chaos representation with arbitrary probability measure, SIAM Journal on Scientific Computing, 26 (2), 395–410 (2004) doi:10.1137/S1064827503424505.

    Article  MathSciNet  MATH  Google Scholar 

  45. Soize C. Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, 195 (1–3), 26–64 (2006) doi:10.1016/j.cma.2004.12.014.

    Article  MathSciNet  MATH  Google Scholar 

  46. Soize C. Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, 23 (2–3), 307–323 (2008) doi:10.1016/j.probengmech.2007.12.019.

    Article  Google Scholar 

  47. Soize C, Ghanem R. Reduced chaos decomposition with random coefficients of vector-valued random variables and random fields, Computer Methods in Applied Mechanics and Engineering, 198 (21–26), 1926–1934 (2009) doi:10.1016/j.cma.2008.12.035.

    Article  MathSciNet  MATH  Google Scholar 

  48. Soize C. Generalized Probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions, International Journal for Numerical Methods in Engineering, 81 (8), 939–970 (2010) doi:10.1002/nme.2712.

    MathSciNet  MATH  Google Scholar 

  49. Soize C, Desceliers C. Computational aspects for constructing realizations of polynomial chaos in high dimension, SIAM Journal On Scientific Computing, 32 (5), 2820–2831 (2010) doi:10.1137/100787830.

    Article  MathSciNet  MATH  Google Scholar 

  50. Soize C. Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods in Applied Mechanics and Engineering, 199 (33–36), 2150–2164 (2010) doi:10.1016/j.cma.2010.03.013.

    Article  MathSciNet  MATH  Google Scholar 

  51. Soize C. A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension, Computer Methods in Applied Mechanics and Engineering, 200 (45–46), 3083–3099 (2011) doi:10.1016/j.cma.2011. 07.005.

    Article  MathSciNet  MATH  Google Scholar 

  52. Soize C. Stochastic Models of Uncertainties in Computational Mechanics, American Society of Civil Engineers (ASCE), Reston, 2012.

    Book  MATH  Google Scholar 

  53. Soize C. Polynomial chaos expansion of a multimodal random vector, SIAM/ASA Journal on Uncertainty Quantification, 3 (1), 34–60 (2015) doi:10.1137/140968495.

    Article  MathSciNet  MATH  Google Scholar 

  54. Soize C. Random Matrix Models and Nonparametric Method for Uncertainty Quantification, pp. 1–69, in Handbook for Uncertainty Quantification, edited by R. Ghanem, D. Higdon, and H. Owhadi, doi:10.1007/978-3-319-11259-6_5-1, SpringerReference, Springer, 2016.

  55. Soize C. Random vectors and random fields in high dimension - Parametric model-based representation, identification from data, and inverse problems, pp. 1–53, in Handbook for Uncertainty Quantification, edited by R. Ghanem, D. Higdon, and H. Owhadi, doi:10.1007/978-3-319-11259-6_30-1, SpringerReference, Springer, 2016.

  56. Soize C, Ghanem R. Data-driven probability concentration and sampling on manifold, Journal of Computational Physics, 321, 242–258 (2016) doi:10.1016/j.jcp.2016.05.044.

    Article  MathSciNet  MATH  Google Scholar 

  57. Tipireddy R, Ghanem R. Basis adaptation in homogeneous chaos spaces, Journal of Computational Physics, 259, 304–317 (2014) doi:10.1016/j.jcp.2013.12.009.

    Article  MathSciNet  MATH  Google Scholar 

  58. Torquato S. Random Heterogeneous Materials, Microstructure and Macroscopic Properties, Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  59. Walpole LJ. Elastic behavior of composite materials: theoretical foundations, Advances in Applied Mechanics, 21, 169–242 (1981) doi:10.1016/S0065-2156(08)70332-6.

    Article  MATH  Google Scholar 

  60. Walpole LJ. Fourth-rank tensors of the thirty-two crystal classes: Multiplication Tables, Proceedings of the Royal Society A, 391, 149–179 (1984) doi:10.1098/rspa.1984.0008. (1984)

    MathSciNet  MATH  Google Scholar 

  61. Wan XL, Karniadakis GE. Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM Journal on Scientific Computing, 28 (3), 901–928 (2006) doi:10.1137/050627630.

    Article  MathSciNet  MATH  Google Scholar 

  62. Xiu DB, Karniadakis GE. Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, 24 (2), 619–644 (2002) doi:10.1137/S1064827501387826.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soize, C. (2017). Random Fields and Uncertainty Quantification in Solid Mechanics of Continuum Media. In: Uncertainty Quantification. Interdisciplinary Applied Mathematics, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-54339-0_10

Download citation

Publish with us

Policies and ethics