Skip to main content

Artifacts and Microartifacts in Anthropogenic Soils

  • Chapter
  • First Online:
Anthropogenic Soils

Part of the book series: Progress in Soil Science ((PROSOIL))

  • 1022 Accesses

Abstract

Artifacts are objects >2 mm, whereas microartifacts are 0.25–2.0 mm, in size that were produced, modified, or transported from their source, by human activity. Artifacts are typically coal-related wastes (coal, cinders, etc.), waste building materials (brick, mortar, etc.), industrial wastes (coked coal, slag, etc.), and objects of archaeological significance (pottery, bone, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah MI, Atherton MP (1964) The thermometric significance of magnetite in low grade metamorphic rocks. Am J Sci 262:904–917

    Article  CAS  Google Scholar 

  • Ahmad S, Iqbal Y, Ghani F (2008) Phase and microstructure of brick-clay soil and fired clay-bricks from some areas in Peshawar Pakistan. J Pak Mater Soc 2:33–39

    Google Scholar 

  • Akinyemi SA, Akinlua A, Gitari WM, Akinyeye RO, Petrik LF (2011) The leachability of major elements at different stages of weathering in dry disposed fly ash. Coal Comb Gasif Prod 3:28–52

    Google Scholar 

  • Asami K, Kikuchi M (2002) Characterization of rust layers on weathering steels air-exposed for a long period. Mater Trans 43:2818–2825

    Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geog 34:21–28

    Article  Google Scholar 

  • Bayless ER, Bullen TD, Fitzpatrick JA (2004) Use of 87Sr/86Sr and δ11B to identify slag-affected sediment in southern Lake Michigam. Environ Sci Technol 38:1330–1337

    Article  CAS  Google Scholar 

  • Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Arch Sci 31:867–882

    Article  Google Scholar 

  • Bhargava SK, Garg A, Subsinghe ND (2009) In situ high-temperature phase transformation studies on pyrite. Fuel 88:988–993

    Article  CAS  Google Scholar 

  • Brevik EC, Fenton TE (2004) The effect of changes in bulk density on soil electrical conductivity as measured with the Geonics® EM-38. Soil Surv Horiz 45(3):96–102

    Article  Google Scholar 

  • Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy dispersive X-ray spectroscopy. Geoderma 128:116–129

    Article  CAS  Google Scholar 

  • Brown JL (2013) Rocky road: the story of asphalt pavement. Civil Eng 83:40–43

    Google Scholar 

  • Carlson CL, Adriano DC (1993) Environmental impacts of coal combustion residues. J Environ Qual 22:227–247

    Article  CAS  Google Scholar 

  • Chang S, Berner RA (1999) Coal weathering and the geochemical carbon cycle. Geochim Cosmo Acta 63:3301–3310

    Article  CAS  Google Scholar 

  • Choudury N, Mohanty D, Boral P, Kumar S, Hazra SK (2008) Microscopic evaluation of coal and coke for metallurgical usage. Curr Sci 94:74–81

    Google Scholar 

  • Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to carbon black, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895

    Article  CAS  Google Scholar 

  • Corwin DL, Lesch SM (2005) Apparent soil electrical conductivity measurements in agriculture. Comput Electron Agric 46:11–43

    Article  Google Scholar 

  • Cultrone G, Sebastian E, Elert K, de la Torre MJ, Cazalla O, Rodriguez-Navarro C (2004) Influence of mineralogy and firing temperature on the porosity of bricks. J Eur Ceram Soc 24:547–564

    Article  CAS  Google Scholar 

  • Cultrone G, Sebastian E, de la Torre MJ (2005) Mineralogical and physical behavior of solid bricks with additives. Constr Build Mater 19:39–48

    Article  Google Scholar 

  • Diamant RME (1970) The chemistry of building materials. Business Books, London

    Google Scholar 

  • Dunnel RC, Stein JK (1989) Theoretical issues in the interpretation of microartifacts. Geoarchaeology 4:31–42

    Google Scholar 

  • Duval DJ, Risbud SH, Shackelford JF (2008) Mullite. In: Shackelford JF, Doremus RH (eds) Ceramic and glass materials: 27 structure, properties and processing. Springer, Berlin

    Google Scholar 

  • Elias V (2000) Corrosion/degradation of soil reinforcements for mechanically stabilized earth walls and reinforced soil slopes. U.S. Department of Transportation. Federal Highway Administration Pub. FHWA-NHI-00-044: 94 p

    Google Scholar 

  • Fisher GL, Chang DPY, Brummer M (1976) Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres. Science 192:553–555

    Article  CAS  Google Scholar 

  • Fisher GL, Prentice BA, Silberman D, Ondov JM, Biermann AH, Ragaini RC, McFarland AR (1978) Physical and morphological studies of size-classified coal fly ash. Environ Sci Technol 12:447–451

    Article  CAS  Google Scholar 

  • Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic systems. Sci Total Environ 370:190–206

    Article  CAS  Google Scholar 

  • Fredericci C, Zanotto ED, Ziemath EC (2000) Crystallization mechanism and properties of a blast furnace slag glass. J Non-Cryst Solids 273, 64–75

    Google Scholar 

  • Fromm J (2013) Xylem development of trees: from cambial divisions to mature wood cells. In: Fromm J (ed) Cellular aspects of wood formation. Plant cell monographs, vol 20. Springer, Berlin, pp 3–40

    Google Scholar 

  • Grant WH (1969) Abrasion pH, an index of chemical weathering. Clays Clay Miner 17:151–155

    Article  CAS  Google Scholar 

  • Gray RJ (1991) Some petrographic applications to coal, coke and carbons. Org Geochem 17:535–555

    Article  CAS  Google Scholar 

  • Heitz E (1996) Electrochemical and chemical mechanisms. In: Heitz E, Flemming HC, Sand W (eds) Microbially influenced corrosion of materials. Springer, Berlin, pp 27–38

    Chapter  Google Scholar 

  • Hofrichter M, Fakoussa RM (2001) Microbial degradation of coal. In: Hofrichter M, Steinbuchel A (eds) Biopolymers v. 1: Lignin, humic substances and coal. Wiley VCH, pp 393–429

    Google Scholar 

  • Howard JL, Olszewska D (2011) Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan. Environ Pollut 159:754–761

    Article  CAS  Google Scholar 

  • Howard JL, Orlicki KM (2015) Effects of anthropogenic particles on the chemical and geophysical properties of urban soils, Detroit, Michigan. Soil Sci 180:154–166

    Article  CAS  Google Scholar 

  • Howard JL, Orlicki KM (2016) Composition, micromorphology and distribution of microartifacts in anthropogenic soils, Detroit, Michigan USA. Catena 138:38–51

    Article  Google Scholar 

  • Howard JL, Dubay BR, Daniels WL (2013) Artifact weathering, anthropogenic microparticles, and lead contamination in urban soils at former demolition sites, Detroit. Michigan Environ Pollut 179:1–12

    Article  CAS  Google Scholar 

  • Howard JL, Ryzewski K, Dubay BR, Killion TK (2015) Artifact preservation and post-depositional site-formation processes in an urban setting: a geoarchaeological study of a 19th century neighborhood in Detroit. Michigan J Archaeol Sci 53:178–189

    Article  Google Scholar 

  • Howard JL, Orlicki KM, LeTarte SM (2016) Evaluation of geophysical methods for mapping soils in urbanized terrain, Detroit, Michigan USA. Catena 143: 145–158

    Google Scholar 

  • Hu G, Dam-Johansen K, Wedel S, Hansen JP (2006) Decomposition and oxidation of pyrite. Prog Energy Combust Sci 32:295–314

    Article  CAS  Google Scholar 

  • Hunt CB (1953) Dating of mining camps using tin cans and bottles. Geotimes 3:8–10

    Google Scholar 

  • ICCP (International Committee for Coal and Organic Petrology) (1998) The new vitrinite classification (ICCP System 1994). Fuel 77:349–358

    Google Scholar 

  • Islam MM, Meerschman E, Saey T, De Smedt P, Van De Vijver E, Delefortrie S, Van Meirvenne M (2014a) Characterizing compaction variability with an electromagnetic induction sensor in a puddled paddy rice field. Soil Sci Soc Am J 78:579–588

    Article  CAS  Google Scholar 

  • Islam MM, Saey T, Smedt P, Van De Vijver E, Delefortrie S, Van Meirvenne M (2014b) Modeling within field variation of the compaction layer in a paddy rice field using a proximal soil sensing system. Soil Use Manag 30:99–108

    Article  Google Scholar 

  • IUSS Working Group (2015) World Reference Base for Soil Resources 2014 (update 2015), International soil classification system for naming soils and creating legends for soil maps.  World Soil Resources Reports No. 106. FAO, Rome, Italy

    Google Scholar 

  • Izquierdo M, Querol X (2012) Leaching behavior of elements from coal combustion fly ash: an overview. Int. Jour. Coal Geol. 94:54–66

    Article  CAS  Google Scholar 

  • Karato SI, Wang D (2013) Electrical conductivity of minerals and rocks. In: Karato SI (ed) Physics and chemistry of the deep Earth. Wiley, New York, pp 145–182

    Chapter  Google Scholar 

  • Kosmatka SH, Kerkoff B, Panerese WC (2002) Design and control of concrete mixtures, 14th edn. Portland Cement Association, Skokie, IL, p 358

    Google Scholar 

  • Kontny A, Dietl C (2002) Relationships between contact metamorphism and magnetite formation and destruction in a pluton’s aureole, White-Inyo Range, eastern California. Geol Soc Am Bull 114:1438–1451

    Article  CAS  Google Scholar 

  • Kriaa A, Hajji M, Jamoussi F, Hamzaoui, AH (2014) Electrical conductivity of 1:1 and 2:1 clay minerals. Surf. Eng. Appl. Electrochem. 50: 84–94

    Google Scholar 

  • Krull ES, Skjemstad JO (2002) δ13C and δ15N profiles in 14C dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma 1890:1–29

    Google Scholar 

  • Lane DS (2004) Petrographic methods of examining hardened concrete: a petrographic manual. U.S. Department of Transportation Pub. FHWA-HRT-04-150, 324 p

    Google Scholar 

  • Lanteigne S, Schindler M, McDonald AM, Skeries K, Abdu Y, Mantha NM, Murayama M, Hawthrone FC, Hochella MF Jr (2012) Mineralogy and weathering of smelter-derived spherical particles in soils: Implications for the mobility of Ni and Cu in the surficial environment. Water Air Soil Pollut 223:3619–3641

    Article  CAS  Google Scholar 

  • Livingston RA, Stutzman PE, Schumann I (1998) Quantitative X-ray diffraction analysis of handmolded brick. In: Baer NS, Fritz S, Livingston RA (eds) Conservation of historic brick structures. Donhead Publishing. Ltd., Shafesbury, UK, pp 105–116

    Google Scholar 

  • Lukasik A, Szuszkiewicz M, Magiera T (2015) Impact of artifacts on topsoil magnetic susceptibility enhancement in urban parks of the Upper Silesia conurbation datasets. J Soils Seds 15:1836–1846

    Article  Google Scholar 

  • Lu SG, Wang HY, Guo JL (2011) Magnetic enhancement of urban roadside soils as a proxy of degree of pollution by traffic-related activities. Environ Earth Sci 64:359–371

    Article  CAS  Google Scholar 

  • Magiera T, Strzyszcz Z, Kapicka A, Petrovsky E (2006) Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in central Europe. Geoderma 130:299–311

    Article  Google Scholar 

  • Martinez M, Escobar M (1995) Effect of coal weathering on some geochemical parameters. Org Geochem 23:253–261

    Article  Google Scholar 

  • Matthews A (1976) Magnetite formation by the reduction of hematite with iron under hydrothermal conditions. Am Mineral 61:927–932

    CAS  Google Scholar 

  • Minyuk PS, Tyukova EE, Subbotnikova TV, Kazansky AY, Fedotov AP (2013) Thermal magnetic susceptibility data on natural iron sulfides of northeastern Russia. Russian Geol Geophy 54:464–474

    Article  Google Scholar 

  • Mukherjee S (2011) Applied mineralogy—applications in industry and environment. Springer, Dordrecht 575 p

    Google Scholar 

  • Neff D, Dillman P, Bellot-Gurlet L, Beranger G (2005) Corrosion of iron archaeological artefacts in soil: characterization of the corrosion system. Corros Sci 47:515–535

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Kin yangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 89:295–308

    Google Scholar 

  • Oldfield F (1991) Environmental magnetism—a personal perspective. Quat Sci Rev 10:73–85

    Article  Google Scholar 

  • Petrakis L, Grady DW (1980) Coal analysis, characterization and petrography. J Chem Educ 57:689–694

    Article  CAS  Google Scholar 

  • Piatak NM, Seal RR II (2012) Mineralogy and environmental geochemistry of historic iron slag, Hopewell Furnace National Historic Site, Pennsylvania. USA Appl Geochem 27:623–643

    Article  CAS  Google Scholar 

  • Proctor DM, Fehling KA, Shay EC, Wittenborn JL, Green JJ, Avent C, Bigham RD, Connolly M, Lee B, Shepker TO, Zak MA (2000) Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environ Sci Technol 34:1576–1582

    Article  CAS  Google Scholar 

  • Rapp G (2009) Archaeomineralogy. Springer, Dordrecht 348 p

    Book  Google Scholar 

  • Reedy CL (2008) Thin-section petrography of stone and ceramic cultural materials. Archetype Publications Ltd., London 256 p

    Google Scholar 

  • Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ (1989) Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Sci. Soc. Am. Jour. 53: 433–439

    Google Scholar 

  • Roberts FL, Kandhal PS, Brown RE, Lee DY, Kennedy TW, Thomas W (1994) Hot mix asphalt materials, mixture design, and construction, NAPA Research and Education Foundation

    Google Scholar 

  • Rutherford DW, Wershaw RL, Cox LG (2005) Changes in composition and porosity occurring during the thermal degradation of wood and wood components. USGS Special Investment Report 2004–5292, 79 p

    Google Scholar 

  • Schaefer MV (2010) Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in clay minerals. M.S. thesis, Department of Civil and Environmental Engineering, University of Iowa, Ames, IA

    Google Scholar 

  • Schiffer MB (1987) Formation processes of the archaeological record. University of New Mexico Press, Albuquerque, NM 428 p

    Google Scholar 

  • Schmidt A, Yarnold R, Hill M, Ashmore M (2005) Magnetic susceptibility as proxy for heavy metal pollution: a site study. J Geochem Explor 85:109–117

    Article  CAS  Google Scholar 

  • Schwertmann U, Fisher WR (1973) Natural “amorphous” ferric hydroxide. Geoderma 10:237–247

    Article  CAS  Google Scholar 

  • Shaw RK, Wilson MA, Reinhardt L, Isleib J (2010) Geochemistry of artifactual coarse fragment types from selected New York City soils. 19th World Cong. Soil Sci., Bribane, Australia, 25–27

    Google Scholar 

  • Sherwood SC (2001) Microartifacts. In: Goldberg P, Holliday VT, Ferring CR (eds) Earth sciences in archaeology, Kluwer Academic, New York, pp 327–351

    Google Scholar 

  • Singh V, Pande PC, Jain DK (2010) Text book of botany: structure development and reproduction in Angiosperms. Rastogi Publications, 220 p

    Google Scholar 

  • Smith RD, Campbell JA, Nielson KK (1979) Concentration dependence upon particle size of volatized trace elements in fly ash. Environ Sci Technol 13:553–558

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-NRCS, U.S. Government Print Office, Washington, DC

    Google Scholar 

  • Stevens RE, Carron MK (1948) Simple field test for distinguishing minerals by abrasion pH. Am Minerl 33:31–49

    CAS  Google Scholar 

  • Stoltman JB (2001) The role of petrography in the study of archaeological ceramics. In: Goldberg P, Holliday VT, Ferring CR (eds) Earth sciences and archaeology. Plenum Publishers, New York, pp 297–326

    Chapter  Google Scholar 

  • Suarez-Ruiz I (2012) Organic petrology: An overview. In: Al-Juboury A (ed) Petrology—new perspectives and applications. Shanghai, Intech Publishers, pp 199–224

    Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, pp 283–292

    Google Scholar 

  • Van Oss HG (2005) Background facts and issues concerning cement and cement data. U.S. Geological Survey Open File Report 2005–1152, 44 p

    Google Scholar 

  • Verosub KL, Roberts AP (1995) Environmental magnetism: past, present and future. J Geophys Res 100(B2):2175–2192

    Article  Google Scholar 

  • Vodyanitskii YN, Shoba SA (2015) Magnetic susceptibility as an indicator of heavy metal contamination in urban soils (Review). Moscow Univ Soil Sci Bull 70:13–20

    Article  Google Scholar 

  • Wagner D, Devisme O, Patisson F, Ablitzer D (2006) A laboratory study of the reduction of iron oxides by hydrogen. Proc Sohn Int Symp 2:111–120

    CAS  Google Scholar 

  • Waanders FB, Vinken E, Mans A, Mulaba-Bafubiandi AF (2003) Iron minerals in coal, weathered coal and coal ash—SEM and Mossbauer results. Hyperfine Interact 148(149):21–29

    Article  Google Scholar 

  • Ward CR (2002) Analysis and significance of mineral matter in coal seams. Int J Coal Geol 50:135–168

    Article  CAS  Google Scholar 

  • Ward CR, French D (2005) Relation between coal and fly ash mineralogy, based on quantitative X-ray diffraction methods. Proc World Coal Ash Conf, Lexington, KY 14 p

    Google Scholar 

  • Wightman WE, Jalinoos F, Sirles P, Hanna K (2003) Application of geophysical methods to highway related problems. Federal Highway Administration, Central Federal Lands Highway Division, Lakewood, CO, Publication No. FHWA-IF-04-02

    Google Scholar 

  • Wilimzig M, Bock E (1996) Attack of mortar by bacteria and fungi. In: Heitz E, Flemming HC, Sand W (eds) Microbially-influenced corrosion of materials. Springer, Berlin, pp 311–323

    Chapter  Google Scholar 

  • Wu Y, Hubbard S, Williams KH, Ajo-Franklin J (2010) On the complex conductivity signatures of calcite precipitation. J Geophys Res 115, G00G04

    Google Scholar 

  • Yang T, Liu Q, Li H, Zeng Q, Chan L (2010) Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications. Atmos Environ 44:1175–1185

    Article  CAS  Google Scholar 

  • Yang T, Liu Q, Zeng Q, Chan L (2012) Relationship between magnetic properties and heavy metals of urban soils with different soil types and environmental settings: implications for magnetic mapping. Environ Earth Sci 66:409–420

    Article  CAS  Google Scholar 

  • Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civil Eng Article 463638, 13 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Howard .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Howard, J. (2017). Artifacts and Microartifacts in Anthropogenic Soils. In: Anthropogenic Soils. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-54331-4_5

Download citation

Publish with us

Policies and ethics