Skip to main content

Anycast Latency: How Many Sites Are Enough?

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10176))

Abstract

Anycast is widely used today to provide important services such as DNS and Content Delivery Networks (CDNs). An anycast service uses multiple sites to provide high availability, capacity and redundancy. BGP routing associates users to sites, defining the catchment that each site serves. Although prior work has studied how users associate with anycast services informally, in this paper we examine the key question how many anycast sites are needed to provide good latency, and the worst case latencies that specific deployments see. To answer this question, we first define the optimal performance that is possible, then explore how routing, specific anycast policies, and site location affect performance. We develop a new method capable of determining optimal performance and use it to study four real-world anycast services operated by different organizations: C-, F-, K-, and L-Root, each part of the Root DNS service. We measure their performance from more than 7,900 vantage points (VPs) worldwide using RIPE Atlas. (Given the VPs uneven geographic distribution, we evaluate and control for potential bias.) Our key results show that a few sites can provide performance nearly as good as many, and that geographic location and good connectivity have a far stronger effect on latency than having many sites. We show how often users see the closest anycast site, and how strongly routing policy affects site selection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The term anycast instance can refer to a site or to specific servers at a site. Because of this ambiguity we avoid that term in this paper.

References

  1. Abley, J., Lindqvist, K.E.: Operation of Anycast Services. RFC 4786 (2006)

    Google Scholar 

  2. Akhtar, Z., Hussain, A., Katz-Bassett, E., Govindan, R.: DBit: assessing statistically significant differences in CDN performance. In: IFIP TMA (2016)

    Google Scholar 

  3. Bajpai, V., Eravuchira, S.J., Schönwälder, J.: Lessons learned from using the RIPE atlas platform for measurement research. ACM CCR 45(3), 35–42 (2015)

    Article  Google Scholar 

  4. Ballani, H., Francis, P.: Towards a global IP anycast service. In: ACM SIGCOMM, pp. 301–312 (2005)

    Google Scholar 

  5. Ballani, H., Francis, P., Ratnasamy, S.: A measurement-based deployment proposal for IP anycast. In: ACM IMC, pp. 231–244 (2006)

    Google Scholar 

  6. Bellis, R.: Researching F-root Anycast Placement Using RIPE Atlas (2015). https://labs.ripe.net/

  7. Boothe, P., Bush, R.: Anycast Measurements Used to Highlight Routing Instabilities. NANOG 34 (2005)

    Google Scholar 

  8. Brownlee, N., Claffy, K.C., Nemeth, E.: DNS Root/gTLD performance measurement. In: USENIX LISA, pp. 241–255 (2001)

    Google Scholar 

  9. Brownlee, N., Ziedins, I.: Response time distributions for global name servers. In: PAM (2002)

    Google Scholar 

  10. Bush, R.: DNS anycast stability: some initial results. In: CAIDA/WIDE Workshop (2005)

    Google Scholar 

  11. CAIDA. Skitter. http://www.caida.org/tools/measurement/skitter/

  12. Calder, M., Fan, X., Hu, Z., Katz-Bassett, E., Heidemann, J., Govindan, R.: Mapping the expansion of Google’s serving infrastructure. In: ACM IMC, pp. 313–326 (2013)

    Google Scholar 

  13. Calder, M., Flavel, A., Katz-Bassett, E., Mahajan, R., Padhye, J.: Analyzing the performance of an anycast CDN. In: ACM IMC, pp. 531–537 (2015)

    Google Scholar 

  14. Castro, S., Wessels, D., Fomenkov, M., Claffy, K.: A day at the root of the internet. ACM CCR 38(5), 41–46 (2008)

    Article  Google Scholar 

  15. Cicalese, D., Augé, J., Joumblatt, D., Friedman, T., Rossi, D.: Characterizing IPv4 anycast adoption and deployment. In: ACM CoNEXT (2015)

    Google Scholar 

  16. Cicalese, D., Joumblatt, D., Rossi, D., Buob, M.-O., Augé, J., Friedman, T.: A fistful of pings: accurate and lightweight anycast enummeration and geolocation. In: IEEE INFOCOM, pp. 2776–2784 (2015)

    Google Scholar 

  17. Colitti, L.: Effect of anycast on K-root. In: 1st DNS-OARC Workshop (2005)

    Google Scholar 

  18. DNS Root Servers. http://www.root-servers.org/

  19. Fan, X., Heidemann, J., Govindan, R.: Evaluating anycast in the domain name system. In: IEEE INFOCOM, pp. 1681–1689 (2013)

    Google Scholar 

  20. Fan, X., Katz-Bassett, E., Heidemann, J.: Assessing affinity between users and CDN sites. In: Steiner, M., Barlet-Ros, P., Bonaventure, O. (eds.) TMA 2015. LNCS, vol. 9053, pp. 95–110. Springer, Heidelberg (2015). doi:10.1007/978-3-319-17172-2_7

    Google Scholar 

  21. Fomenkov, M., Claffy, K.C., Huffaker, B., Moore, D.: Macroscopic internet topology and performance measurements from the DNS root name servers. In: USENIX LISA, pp. 231–240 (2001)

    Google Scholar 

  22. Google Public DNS. https://developers.google.com/speed/public-dns/

  23. Kuipers, J.H.: Analysing the K-root anycast infrastructure (2015). https://labs.ripe.net/

  24. Lee, B.-S., Tan, Y.S., Sekiya, Y., Narishige, A., Date, S.: Availability and effectiveness of root DNS servers: a long term study. In: IFIP/IEEE NOMS, pp. 862–865 (2010)

    Google Scholar 

  25. Lee, T., Huffaker, B., Fomenkov, M., Claffy, K.C.: On the problem of optimization of DNS root servers’ placement. In: PAM (2003)

    Google Scholar 

  26. Liang, J., Jiang, J., Duan, H., Li, K., Wu, J.: Measuring query latency of top level DNS servers. In: Roughan, M., Chang, R. (eds.) PAM 2013. LNCS, vol. 7799, pp. 145–154. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36516-4_15

    Chapter  Google Scholar 

  27. Liu, Z., Huffaker, B., Fomenkov, M., Brownlee, N., Claffy, K.C.: Two days in the life of the DNS anycast root servers. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 125–134. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71617-4_13

    Chapter  Google Scholar 

  28. Palsson, B., Kumar, P., Jafferalli, S., Kahn, Z.A.: TCP over IP anycast - pipe dream or reality? (2015). https://engineering.linkedin.com/

  29. Pang, J., Hendricks, J., Akella, A., Prisco, R.D., Maggs, B., Seshan, S.: Availability, usage, and deployment characteristics of the domain name server. In: ACM IMC, pp. 1–14 (2004)

    Google Scholar 

  30. Partridge, C., Mendez, T., Milliken, W.: Host Anycasting Service. RFC 1546 (1993)

    Google Scholar 

  31. RIPE NCC. Dnsmon (2015). https://atlas.ripe.net/dnsmon/

  32. RIPE NCC Staff: RIPE Atlas: a global Internet measurement network. Internet Protocol J. 18(3), 2–26 (2015)

    Google Scholar 

  33. Rootops. Events of 2015–11-30. Technical report, Root Server Operators (2015)

    Google Scholar 

  34. Sarat, S., Pappas, V., Terzis, A.: On the use of anycast in DNS. In: ICCCN, pp. 71–78 (2006)

    Google Scholar 

  35. Schmidt, R.d.O., Heidemann, J., Kuipers, J.H.: Anycast latency: how many sites are enough? Technical report ISI-TR-2016-708, USC-ISI, May 2016

    Google Scholar 

  36. Spring, N., Mahajan, R., Anderson, T.: Quantifying the causes of path inflation. In: ACM SIGCOMM, pp. 113–124 (2003)

    Google Scholar 

  37. Streibelt, F., Böttger, J., Chatzis, N., Smaragdakis, G., Feldman, A.: Exploring EDNS-client-subnet adopters in your free time. In: ACM IMC, pp. 305–312 (2013)

    Google Scholar 

  38. Toonk, A.: How OpenDNS achieves high availability with anycast routing (2013). https://labs.opendns.com/

  39. Woolf, S., Conrad, D.: Requirements for a Mechanism Identifying a Name Server Instance. RFC 4892 (2007)

    Google Scholar 

Download references

Acknowledgments

We thank Geoff Huston (APNIC), George Michaelson (APNIC), Ray Bellis (ISC),Cristian Hesselman (SIDN Labs), Benno Overeinder (NLnet Labs) and Jaap Akkerhuis (NLnet Labs), Duane Wessels (Verisign), Paul Vixie (Farsight), Romeo Zwart (RIPE NCC), Anand Buddhdev (RIPE NCC), and operators from C Root for their technical feedback.

This research uses measurements from RIPE Atlas, operated by RIPE NCC.

Ricardo Schmidt’s work is in the context of SAND (Self-managing Anycast Networks for the DNS: http://www.sand-project.nl) and DAS (DNS Anycast Security: http://www.das-project.nl) projects, sponsored by SIDN, NLnet Labs and SURFnet.

John Heidemann’s work is partially sponsored by the U.S. Dept. of Homeland Security (DHS) Science and Technology Directorate, HSARPA, Cyber Security Division, via SPAWAR Systems Center Pacific under Contract No. N66001-13-C-3001, and via BAA 11-01-RIKA and Air Force Research Laboratory, Information Directorate under agreement numbers FA8750-12-2-0344 and FA8750-15-2-0224. The U.S. Government is authorized to make reprints for Governmental purposes notwithstanding any copyright. The views contained herein are those of the authors and do not necessarily represent those of DHS or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo de Oliveira Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

de Oliveira Schmidt, R., Heidemann, J., Kuipers, J.H. (2017). Anycast Latency: How Many Sites Are Enough?. In: Kaafar, M., Uhlig, S., Amann, J. (eds) Passive and Active Measurement. PAM 2017. Lecture Notes in Computer Science(), vol 10176. Springer, Cham. https://doi.org/10.1007/978-3-319-54328-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54328-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54327-7

  • Online ISBN: 978-3-319-54328-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics