Advertisement

Haploidentical Hematopoietic Cell Transplantation in Children with Neoplastic Disorders

  • Mattia Algeri
  • Franco Locatelli
Chapter
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)

Abstract

Despite marked improvement in the treatment of children affected by hematologic malignancies with chemotherapy, a significant proportion of patients require allogeneic hematopoietic cell transplantation (allo-HCT) either in first remission or beyond. Haploidentical hematopoietic cell transplantation (haplo-HCT) opens the possibility to offer this treatment to every child in need of an allograft lacking an HLA-matched sibling (HLA-MSD), HLA-matched unrelated donor (HLA-MUD), or a suitable umbilical cord blood (CB) unit. However, early attempts at haplo-HCT in leukemia patients were associated with high rates of graft rejection and graft-versus-host disease (GvHD), leading to high transplant-related mortality (TRM) and, consequently, poor survival. In the last two decades, novel insights in transplant immunology, continuing advances in graft manipulation technology, and improved supportive care strategies have led to significantly better outcomes, so, with further refinements, it is possible that haplo-HCT can become the preferred transplant option for children with hematologic malignancies without an HLA-identical relative. In this chapter, we have summarized clinical results obtained with haplo-HCT in pediatric hematologic malignancies, analyzing advantages and drawbacks of various approaches and discussing strategies to further improving patient’s outcome.

Keywords

Haploidentical transplant GvHD Children Cord blood CD34 T-cell depletion NK cells G-CSF Graft 

References

  1. 1.
    Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.CrossRefGoogle Scholar
  2. 2.
    Rocha V, Locatelli F. Searching for alternative hematopoietic stem cell donors for pediatric patients. Bone Marrow Transplant. 2008;41:207–14.CrossRefGoogle Scholar
  3. 3.
    Locatelli F, Pende D, Maccario R, Mingari MC, Moretta A, Moretta L. Haploidentical hemopoietic stem cell transplantation for the treatment of high-risk leukemias: how Nk cells make the difference. Clin Immunol. 2009;133:171–8.CrossRefGoogle Scholar
  4. 4.
    Martelli MF, Aversa F, Bachar-Lustig E, Velardi A, Reich-Zelicher S, Tabilio A, Gur H, Reisner Y. Transplants across human leukocyte antigen barriers. Semin Hematol. 2002;39:48–56.CrossRefGoogle Scholar
  5. 5.
    Anasetti C, Amos D, Beatty PG, Appelbaum FR, Bensinger W, Buckner CD, Clift R, Doney K, Martin PJ, Mickelson E, et al. Effect of Hla compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204.CrossRefGoogle Scholar
  6. 6.
    Powles RL, Morgenstern GR, Kay HE, Mcelwain TJ, Clink HM, Dady PJ, Barrett A, Jameson B, Depledge MH, Watson JG, Sloane J, Leigh M, Lumley H, Hedley D, Lawler SD, Filshie J, Robinson B. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet. 1983;1:612–5.CrossRefGoogle Scholar
  7. 7.
    Szydlo R, Goldman JM, Klein JP, Gale RP, Ash RC, Bach FH, Bradley BA, Casper JT, Flomenberg N, Gajewski JL, Gluckman E, Henslee-Downey PJ, Hows JM, Jacobsen N, Kolb HJ, Lowenberg B, Masaoka T, Rowlings PA, Sondel PM, Van Bekkum DW, Van Rood JJ, Vowels MR, Zhang MJ, Horowitz MM. Results of allogeneic bone marrow transplants for leukemia using donors other than Hla-identical siblings. J Clin Oncol. 1997;15:1767–77.CrossRefGoogle Scholar
  8. 8.
    Reisner Y, Kapoor N, Kirkpatrick D, Pollack MS, Cunningham-Rundles S, Dupont B, Hodes MZ, Good RA, O'reilly RJ. Transplantation for severe combined immunodeficiency with Hla-A,B,D,Dr incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood. 1983;61:341–8.PubMedGoogle Scholar
  9. 9.
    Antoine C, Muller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, Fasth A, Heilmann C, Wulffraat N, Seger R, Blanche S, Friedrich W, Abinun M, Davies G, Bredius R, Schulz A, Landais P, Fischer A, European Group for Bone and Marrow Transplantation & European Society for Immunodeficiency. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the european experience 1968-99. Lancet. 2003;361:553–60.CrossRefGoogle Scholar
  10. 10.
    Reisner Y, Martelli MF. Stem cell escalation enables Hla-disparate haematopoietic transplants in leukaemia patients. Immunol Today. 1999;20:343–7.CrossRefGoogle Scholar
  11. 11.
    Bashey A, Zhang X, Sizemore CA, Manion K, Brown S, Holland HK, Morris LE, Solomon SR. T-cell-replete Hla-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous Hla-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–6.CrossRefGoogle Scholar
  12. 12.
    Di Stasi A, Milton DR, Poon LM, Hamdi A, Rondon G, Chen J, Pingali SR, Konopleva M, Kongtim P, Alousi A, Qazilbash MH, Ahmed S, Bashir Q, Al-Atrash G, Oran B, Hosing CM, Kebriaei P, Popat U, Shpall EJ, Lee DA, De Lima M, Rezvani K, Khouri IF, Champlin RE, Ciurea SO. Similar transplantation outcomes for acute myeloid leukemia and myelodysplastic syndrome patients with haploidentical versus 10/10 human leukocyte antigen-matched unrelated and related donors. Biol Blood Marrow Transplant. 2014;20:1975–81.CrossRefGoogle Scholar
  13. 13.
    Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, Ruggeri L, Barbabietola G, Aristei C, Latini P, Reisner Y, Martelli MF. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched Hla haplotype. N Engl J Med. 1998;339:1186–93.CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Vicent M, Molina B, Andion M, Sevilla J, Ramirez M, Perez A, Diaz MA. Allogeneic hematopoietic transplantation using haploidentical donor vs. unrelated cord blood donor in pediatric patients: a single-center retrospective study. Eur J Haematol. 2011;87:46–53.CrossRefGoogle Scholar
  15. 15.
    Handgretinger R, Chen X, Pfeiffer M, Mueller I, Feuchtinger T, Hale GA, Lang P. Feasibility and outcome of reduced-intensity conditioning in haploidentical transplantation. Ann N Y Acad Sci. 2007;1106:279–89.CrossRefGoogle Scholar
  16. 16.
    Handgretinger R, Klingebiel T, Lang P, Schumm M, Neu S, Geiselhart A, Bader P, Schlegel PG, Greil J, Stachel D, Herzog RJ, Niethammer D. Megadose transplantation of purified peripheral blood Cd34(+) progenitor cells from Hla-mismatched parental donors in children. Bone Marrow Transplant. 2001;27:777–83.CrossRefGoogle Scholar
  17. 17.
    Lang P, Greil J, Bader P, Handgretinger R, Klingebiel T, Schumm M, Schlegel PG, Feuchtinger T, Pfeiffer M, Scheel-Walter H, Fuhrer M, Martin D, Niethammer D. Long-term outcome after haploidentical stem cell transplantation in children. Blood Cells Mol Dis. 2004;33:281–7.CrossRefGoogle Scholar
  18. 18.
    Lang P, Teltschik HM, Feuchtinger T, Muller I, Pfeiffer M, Schumm M, Ebinger M, Schwarze CP, Gruhn B, Schrauder A, Albert MH, Greil J, Urban C, Handgretinger R. Transplantation of Cd3/Cd19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol. 2014;165:688–98.CrossRefGoogle Scholar
  19. 19.
    Marks DI, Khattry N, Cummins M, Goulden N, Green A, Harvey J, Hunt LP, Keen L, Robinson SP, Steward CG, Cornish JM. Haploidentical stem cell transplantation for children with acute leukaemia. Br J Haematol. 2006;134:196–201.CrossRefGoogle Scholar
  20. 20.
    Ortin M, Raj R, Kinning E, Williams M, Darbyshire PJ. Partially matched related donor peripheral blood progenitor cell transplantation in Paediatric patients adding fludarabine and anti-lymphocyte gamma-globulin. Bone Marrow Transplant. 2002;30:359–66.CrossRefGoogle Scholar
  21. 21.
    Berger M, Lanino E, Cesaro S, Zecca M, Vassallo E, Faraci M, De Bortoli M, Barat V, Prete A, Fagioli F. Feasibility and outcome of haploidentical hematopoietic stem cell transplantation with post-transplant high-dose cyclophosphamide for children and adolescents with hematologic malignancies: An Aieop-Gitmo retrospective multicenter study. Biol Blood Marrow Transplant. 2016;22:902–9.CrossRefGoogle Scholar
  22. 22.
    Jaiswal SR, Chakrabarti A, Chatterjee S, Bhargava S, Ray K, O’Donnell P, Chakrabarti S. Haploidentical peripheral blood stem cell transplantation with post-transplantation cyclophosphamide in children with advanced acute leukemia with fludarabine-, busulfan-, and melphalan-based conditioning. Biol Blood Marrow Transplant. 2016;22:499–504.CrossRefGoogle Scholar
  23. 23.
    Liu DH, Xu LP, Liu KY, Wang Y, Chen H, Han W, Zhang XH, Yan CH, Zhang YY, Wang JZ, Chen YH, Wang FR, Huang XJ. Long-term outcomes of unmanipulated haploidentical Hct for paediatric patients with acute leukaemia. Bone Marrow Transplant. 2013;48:1519–24.CrossRefGoogle Scholar
  24. 24.
    Bachar-Lustig E, Rachamim N, Li HW, Lan F, Reisner Y. Megadose of T cell-depleted bone marrow overcomes Mhc barriers in sublethally irradiated mice. Nat Med. 1995;1:1268–73.CrossRefGoogle Scholar
  25. 25.
    Aversa F, Tabilio A, Terenzi A, Velardi A, Falzetti F, Giannoni C, Iacucci R, Zei T, Martelli MP, Gambelunghe C, et al. Successful engraftment of t-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–55.PubMedGoogle Scholar
  26. 26.
    Aversa F, Reisner Y, Martelli MF. The haploidentical option for high-risk haematological malignancies. Blood Cells Mol Dis. 2008;40:8–12.CrossRefGoogle Scholar
  27. 27.
    Klingebiel T, Cornish J, Labopin M, Locatelli F, Darbyshire P, Handgretinger R, Balduzzi A, Owoc-Lempach J, Fagioli F, Or R, Peters C, Aversa F, Polge E, Dini G, Rocha V, Pediatric D, Acute Leukemia Working Parties of the European Group for Blood and Marrow Transplantation. Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: impact of center size: an analysis on behalf of the Acute Leukemia and Pediatric Disease Working Parties of the European Blood and Marrow Transplant Group. Blood. 2010;115:3437–46.CrossRefGoogle Scholar
  28. 28.
    Barrett AJ. Understanding and harnessing the graft-versus-leukaemia effect. Br J Haematol. 2008;142:877–88.CrossRefGoogle Scholar
  29. 29.
    Aversa F, Terenzi A, Tabilio A, Falzetti F, Carotti A, Ballanti S, Felicini R, Falcinelli F, Velardi A, Ruggeri L, Aloisi T, Saab JP, Santucci A, Perruccio K, Martelli MP, Mecucci C, Reisner Y, Martelli MF. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.CrossRefGoogle Scholar
  30. 30.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.CrossRefGoogle Scholar
  31. 31.
    Moretta L, Locatelli F, Pende D, Marcenaro E, Mingari MC, Moretta A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117:764–71.CrossRefGoogle Scholar
  32. 32.
    Oevermann L, Michaelis SU, Mezger M, Lang P, Toporski J, Bertaina A, Zecca M, Moretta L, Locatelli F, Handgretinger R. Kir B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with all. Blood. 2014;124:2744–7.CrossRefGoogle Scholar
  33. 33.
    Pende D, Marcenaro S, Falco M, Martini S, Bernardo ME, Montagna D, Romeo E, Cognet C, Martinetti M, Maccario R, Mingari MC, Vivier E, Moretta L, Locatelli F, Moretta A. Anti-leukemia activity of alloreactive Nk cells in Kir ligand-mismatched haploidentical Hct for pediatric patients: evaluation of the functional role of activating Kir and redefinition of inhibitory Kir specificity. Blood. 2009;113:3119–29.CrossRefGoogle Scholar
  34. 34.
    Pfeiffer MM, Feuchtinger T, Teltschik HM, Schumm M, Muller I, Handgretinger R, Lang P. Reconstitution of natural killer cell receptors influences natural killer activity and relapse rate after haploidentical transplantation of T- And B-cell depleted grafts in children. Haematologica. 2010;95(8):1381.CrossRefGoogle Scholar
  35. 35.
    Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9.CrossRefGoogle Scholar
  36. 36.
    Biassoni R, Cantoni C, Falco M, Pende D, Millo R, Moretta L, Bottino C, Moretta A. Human natural killer cell activating receptors. Mol Immunol. 2000;37:1015–24.CrossRefGoogle Scholar
  37. 37.
    Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with Hla-C and Hla-B recognition by human natural killer cells. Science. 1995;268:405–8.CrossRefGoogle Scholar
  38. 38.
    Moretta A, Bottino C, Pende D, Tripodi G, Tambussi G, Viale O, Orengo A, Barbaresi M, Merli A, Ciccone E, et al. Identification of four subsets of human Cd3-Cd16+ natural killer (Nk) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of Nk clones and ability to mediate Specific alloantigen recognition. J Exp Med. 1990a;172:1589–98.CrossRefGoogle Scholar
  39. 39.
    Moretta A, Tambussi G, Bottino C, Tripodi G, Merli A, Ciccone E, Pantaleo G, Moretta L. A novel surface antigen expressed by a subset of human Cd3− Cd16+ natural killer cells. role in cell activation and regulation of cytolytic function. J Exp Med. 1990b;171:695–714.CrossRefGoogle Scholar
  40. 40.
    Moretta A, Vitale M, Bottino C, Orengo AM, Morelli L, Augugliaro R, Barbaresi M, Ciccone E, Moretta L. P58 molecules as putative receptors for major histocompatibility complex (Mhc) class I molecules in human natural killer (Nk) cells. Anti-P58 antibodies reconstitute lysis of Mhc class I-protected cells in Nk clones displaying different specificities. J Exp Med. 1993;178:597–604.CrossRefGoogle Scholar
  41. 41.
    Stern M, Ruggeri L, Mancusi A, Bernardo ME, De Angelis C, Bucher C, Locatelli F, Aversa F, Velardi A. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112:2990–5.CrossRefGoogle Scholar
  42. 42.
    Cooley S, Trachtenberg E, Bergemann TL, Saeteurn K, Klein J, Le CT, Marsh SG, Guethlein LA, Parham P, Miller JS, Weisdorf DJ. Donors with group B Kir haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia. Blood. 2009;113:726–32.CrossRefGoogle Scholar
  43. 43.
    Cooley S, Weisdorf DJ, Guethlein LA, Klein JP, Wang T, Le CT, Marsh SG, Geraghty D, Spellman S, Haagenson MD, Ladner M, Trachtenberg E, Parham P, Miller JS. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood. 2010;116:2411–9.CrossRefGoogle Scholar
  44. 44.
    Stringaris K, Adams S, Uribe M, Eniafe R, Wu CO, Savani BN, Barrett AJ. Donor Kir genes 2dl5a, 2ds1 and 3ds1 are associated with a reduced rate of leukemia relapse after Hla-identical sibling stem cell transplantation for acute myeloid leukemia but not other hematologic malignancies. Biol Blood Marrow Transplant. 2010;16:1257–64.CrossRefGoogle Scholar
  45. 45.
    Hsu KC, Liu XR, Selvakumar A, Mickelson E, O'reilly RJ, Dupont B. Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol. 2002;169:5118–29.CrossRefGoogle Scholar
  46. 46.
    Parham P. Mhc class I molecules and Kirs in human history, health and survival. Nat Rev Immunol. 2005;5:201–14.CrossRefGoogle Scholar
  47. 47.
    Venstrom JM, Pittari G, Gooley TA, Chewning JH, Spellman S, Haagenson M, Gallagher MM, Malkki M, Petersdorf E, Dupont B, Hsu KC. Hla-C-dependent prevention of leukemia relapse by donor activating Kir2ds1. N Engl J Med. 2012;367:805–16.CrossRefGoogle Scholar
  48. 48.
    Fauriat C, Ivarsson MA, Ljunggren HG, Malmberg KJ, Michaelsson J. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood. 2010;115:1166–74.CrossRefGoogle Scholar
  49. 49.
    Sivori S, Carlomagno S, Falco M, Romeo E, Moretta L, Moretta A. Natural killer cells expressing the Kir2ds1-activating receptor efficiently kill T-cell blasts and dendritic cells: implications in haploidentical Hct. Blood. 2011;117:4284–92.CrossRefGoogle Scholar
  50. 50.
    Barfield RC, Otto M, Houston J, Holladay M, Geiger T, Martin J, Leimig T, Gordon P, Chen X, Handgretinger R. A one-step large-scale method for T- And B-cell depletion of mobilized PBSC for allogeneic transplantation. Cytotherapy. 2004;6:1–6.CrossRefGoogle Scholar
  51. 51.
    Bader P, Soerensen J, Jarisch A, Ponstingl E, Krenn T, Faber J, Durken M, Reinhardt H, Willasch A, Esser R, Bonig H, Koehl U, Klingebiel T. Rapid immune recovery and low Trm in haploidentical stem cell transplantation in children and adolescence using Cd3/Cd19-depleted stem cells. Best Pract Res Clin Haematol. 2011;24:331–7.CrossRefGoogle Scholar
  52. 52.
    Bethge WA, Faul C, Bornhauser M, Stuhler G, Beelen DW, Lang P, Stelljes M, Vogel W, Hagele M, Handgretinger R, Kanz L. Haploidentical allogeneic hematopoietic cell transplantation in adults using Cd3/Cd19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis. 2008;40:13–9.CrossRefGoogle Scholar
  53. 53.
    Dufort G, Pisano S, Incoronato A, Castiglioni M, Carracedo M, Pages C, Simon E, Zuccolo S, Barcelona R, Mezzano R, Tiscornia A, Lemos F, Morosini F, Schelotto M, Giordano H, Carreto E, Bengoechea M, Boggia B, Rodriguez I, Guerrero L, Dabezies A, Castillo L. Feasibility and outcome of haploidentical SCT in pediatric high-risk hematologic malignancies and Fanconi anemia in Uruguay. Bone Marrow Transplant. 2012;47:663–8.CrossRefGoogle Scholar
  54. 54.
    Mead AJ, Thomson KJ, Morris EC, Mohamedbhai S, Denovan S, Orti G, Fielding AK, Kottaridis PD, Hough R, Chakraverty R, Linch DC, Mackinnon S, Peggs KS. Hla-mismatched unrelated donors are a viable alternate graft source for allogeneic transplantation following alemtuzumab-based reduced-intensity conditioning. Blood. 2010;115:5147–53.CrossRefGoogle Scholar
  55. 55.
    Palma J, Salas L, Carrion F, Sotomayor C, Catalan P, Paris C, Turner V, Jorquera H, Handgretinger R, Rivera GK. Haploidentical stem cell transplantation for children with high-risk leukemia. Pediatr Blood Cancer. 2012;59:895–901.CrossRefGoogle Scholar
  56. 56.
    Leung W, Campana D, Yang J, Pei D, Coustan-Smith E, Gan K, Rubnitz JE, Sandlund JT, Ribeiro RC, Srinivasan A, Hartford C, Triplett BM, Dallas M, Pillai A, Handgretinger R, Laver JH, Pui CH. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood. 2011;118:223–30.CrossRefGoogle Scholar
  57. 57.
    Bonneville M, O'brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–78.CrossRefGoogle Scholar
  58. 58.
    Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity. 2009;31:184–96.CrossRefGoogle Scholar
  59. 59.
    Sutton CE, Mielke LA, Mills KH. Il-17-producing gammadelta T cells and innate lymphoid cells. Eur J Immunol. 2012;42:2221–31.CrossRefGoogle Scholar
  60. 60.
    Willcox CR, Pitard V, Netzer S, Couzi L, Salim M, Silberzahn T, Moreau JF, Hayday AC, Willcox BE, Dechanet-Merville J. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat Immunol. 2012;13(9):872.CrossRefGoogle Scholar
  61. 61.
    Gomes AQ, Martins DS, Silva-Santos B. Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res. 2010;70:10024–7.CrossRefGoogle Scholar
  62. 62.
    Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A. Negative depletion of alpha/beta+ T cells and of Cd19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in Hla-mismatched hematopoietic stem cell transplantation. Immunol Lett. 2013a;155:21–3.CrossRefGoogle Scholar
  63. 63.
    Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, Pende D, Falco M, Handgretinger R, Moretta F, Lucarelli B, Brescia LP, Li Pira G, Testi M, Cancrini C, Kabbara N, Carsetti R, Finocchi A, Moretta A, Moretta L, Locatelli F. Hla-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124:822–6.CrossRefGoogle Scholar
  64. 64.
    Airoldi I, Bertaina A, Prigione I, Zorzoli A, Pagliara D, Cocco C, Meazza R, Loiacono F, Lucarelli B, Bernardo ME, Barbarito G, Pende D, Moretta A, Pistoia V, Moretta L, Locatelli F. Gammadelta T-cell reconstitution after Hla-haploidentical hematopoietic transplantation depleted of Tcr-Alphabeta+/Cd19+ lymphocytes. Blood. 2015;125:2349–58.CrossRefGoogle Scholar
  65. 65.
    Lang P, Feuchtinger T, Teltschik HM, Schwinger W, Schlegel P, Pfeiffer M, Schumm M, Lang AM, Lang B, Schwarze CP, Ebinger M, Urban C, Handgretinger R. Improved immune recovery after transplantation of Tcralphabeta/Cd19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10.CrossRefGoogle Scholar
  66. 66.
    Maschan M, Shelikhova L, Ilushina M, Kurnikova E, Boyakova E, Balashov D, Persiantseva M, Skvortsova Y, Laberko A, Muzalevskii Y, Kazachenok A, Glushkova S, Bobrynina V, Kalinina V, Olshanskaya Y, Baidildina D, Novichkova G, Maschan A. Tcr-alpha/beta and Cd19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transplant. 2016;51:668–74.CrossRefGoogle Scholar
  67. 67.
    Anderson BE, Mcniff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, Shlomchik WD. Memory Cd4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112:101–8.CrossRefGoogle Scholar
  68. 68.
    Triplett BM, Shook DR, Eldridge P, Li Y, Kang G, Dallas M, Hartford C, Srinivasan A, Chan WK, Suwannasaen D, Inaba H, Merchant TE, Pui CH, Leung W. Rapid memory T-cell reconstitution recapitulating Cd45ra-depleted haploidentical transplant graft content in patients with hematologic malignancies. Bone Marrow Transplant. 2015;50:968–77.CrossRefGoogle Scholar
  69. 69.
    Zheng H, Matte-Martone C, Jain D, Mcniff J, Shlomchik WD. Central memory Cd8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia. J Immunol. 2009;182:5938–48.CrossRefGoogle Scholar
  70. 70.
    O'donnell PV, Luznik L, Jones RJ, Vogelsang GB, Leffell MS, Phelps M, Rhubart P, Cowan K, Piantados S, Fuchs EJ. Nonmyeloablative bone marrow transplantation from partially Hla-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8:377–86.CrossRefGoogle Scholar
  71. 71.
    Kanakry CG, Ganguly S, Zahurak M, Bolanos-Meade J, Thoburn C, Perkins B, Fuchs EJ, Jones RJ, Hess AD, Luznik L. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157.CrossRefGoogle Scholar
  72. 72.
    Luznik L, Jalla S, Engstrom LW, Iannone R, Fuchs EJ. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98:3456–64.CrossRefGoogle Scholar
  73. 73.
    Luznik L, O'donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, Gooley TA, Piantadosi S, Kaup M, Ambinder RF, Huff CA, Matsui W, Bolanos-Meade J, Borrello I, Powell JD, Harrington E, Warnock S, Flowers M, Brodsky RA, Sandmaier BM, Storb RF, Jones RJ, Fuchs EJ. Hla-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.CrossRefGoogle Scholar
  74. 74.
    Raiola AM, Dominietto A, Ghiso A, Di Grazia C, Lamparelli T, Gualandi F, Bregante S, Van Lint MT, Geroldi S, Luchetti S, Ballerini F, Miglino M, Varaldo R, Bacigalupo A. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant. 2013;19:117–22.CrossRefGoogle Scholar
  75. 75.
    Solomon SR, Sizemore CA, Sanacore M, Zhang X, Brown S, Holland HK, Morris LE, Bashey A. Total body irradiation-based myeloablative haploidentical stem cell transplantation is a safe and effective alternative to unrelated donor transplantation in patients without matched sibling donors. Biol Blood Marrow Transplant. 2015;21:1299–307.CrossRefGoogle Scholar
  76. 76.
    Castagna L, Crocchiolo R, Furst S, Bramanti S, El Cheikh J, Sarina B, Granata A, Mauro E, Faucher C, Mohty B, Harbi S, Chabannon C, Carlo-Stella C, Santoro A, Blaise D. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant. 2014;20:724–9.CrossRefGoogle Scholar
  77. 77.
    Raj K, Pagliuca A, Bradstock K, Noriega V, Potter V, Streetly M, Mclornan D, Kazmi M, Marsh J, Kwan J, Huang G, Getzendaner L, Lee S, Guthrie KA, Mufti GJ, O’Donnell P. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol Blood Marrow Transplant. 2014;20:890–5.CrossRefGoogle Scholar
  78. 78.
    Ciurea SO, Zhang MJ, Bacigalupo AA, Bashey A, Appelbaum FR, Aljitawi OS, Armand P, Antin JH, Chen J, Devine SM, Fowler DH, Luznik L, Nakamura R, O’donnell PV, Perales MA, Pingali SR, Porter DL, Riches MR, Ringden OT, Rocha V, Vij R, Weisdorf DJ, Champlin RE, Horowitz MM, Fuchs EJ, Eapen M. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.CrossRefGoogle Scholar
  79. 79.
    Sawada A, Shimizu M, Isaka K, Higuchi K, Mayumi A, Yoshimoto Y, Kikuchi H, Kondo O, Koyama-Sato M, Yasui M, Kawa K, Inoue M. Feasibility of Hla-haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for advanced pediatric malignancies. Pediatr Hematol Oncol. 2014;31:754–64.CrossRefGoogle Scholar
  80. 80.
    Wang Y, Chang YJ, Xu LP, Liu KY, Liu DH, Zhang XH, Chen H, Han W, Chen YH, Wang FR, Wang JZ, Chen Y, Yan CH, Huo MR, Li D, Huang XJ. Who is the best donor for a related Hla haplotype-mismatched transplant? Blood. 2014;124:843–50.CrossRefGoogle Scholar
  81. 81.
    Kongtim P, Lee DA, Cooper LJ, Kebriaei P, Champlin RE, Ciurea SO. Haploidentical hematopoietic stem cell transplantation as a platform for post-transplantation cellular therapy. Biol Blood Marrow Transplant. 2015;21:1714–20.CrossRefGoogle Scholar
  82. 82.
    Kloess S, Huenecke S, Piechulek D, Esser R, Koch J, Brehm C, Soerensen J, Gardlowski T, Brinkmann A, Bader P, Passweg J, Klingebiel T, Schwabe D, Koehl U. Il-2-activated haploidentical Nk cells restore Nkg2d-mediated Nk-Cell cytotoxicity in neuroblastoma patients by scavenging of plasma mica. Eur J Immunol. 2010;40:3255–67.CrossRefGoogle Scholar
  83. 83.
    Stern M, Passweg JR, Meyer-Monard S, Esser R, Tonn T, Soerensen J, Paulussen M, Gratwohl A, Klingebiel T, Bader P, Tichelli A, Schwabe D, Koehl U. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. Bone Marrow Transplant. 2013;48:433–8.CrossRefGoogle Scholar
  84. 84.
    Yoon SR, Lee YS, Yang SH, Ahn KH, Lee JH, Lee JH, Kim DY, Kang YA, Jeon M, Seol M, Ryu SG, Chung JW, Choi I, Lee KH. Generation of donor natural killer cells from Cd34(+) progenitor cells and subsequent infusion after Hla-mismatched allogeneic hematopoietic cell transplantation: a feasibility study. Bone Marrow Transplant. 2010;45:1038–46.CrossRefGoogle Scholar
  85. 85.
    Locatelli F, Merli P, Rutella S. At the bedside: innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol. 2013b;94:1141–57.CrossRefGoogle Scholar
  86. 86.
    Ciceri F, Bonini C, Stanghellini MT, Bondanza A, Traversari C, Salomoni M, Turchetto L, Colombi S, Bernardi M, Peccatori J, Pescarollo A, Servida P, Magnani Z, Perna SK, Valtolina V, Crippa F, Callegaro L, Spoldi E, Crocchiolo R, Fleischhauer K, Ponzoni M, Vago L, Rossini S, Santoro A, Todisco E, Apperley J, Olavarria E, Slavin S, Weissinger EM, Ganser A, Stadler M, Yannaki E, Fassas A, Anagnostopoulos A, Bregni M, Stampino CG, Bruzzi P, Bordignon C. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the Tk007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10:489–500.CrossRefGoogle Scholar
  87. 87.
    Greco R, Oliveira G, Stanghellini MT, Vago L, Bondanza A, Peccatori J, Cieri N, Marktel S, Mastaglio S, Bordignon C, Bonini C, Ciceri F. Improving the safety of cell therapy with the Tk-suicide gene. Front Pharmacol. 2015;6:95.CrossRefGoogle Scholar
  88. 88.
    Zhou X, Dotti G, Krance RA, Martinez CA, Naik S, Kamble RT, Durett AG, Dakhova O, Savoldo B, Di Stasi A, Spencer DM, Lin YF, Liu H, Grilley BJ, Gee AP, Rooney CM, Heslop HE, Brenner MK. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood. 2015;125:4103–13.CrossRefGoogle Scholar
  89. 89.
    Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: cars take the front seat for hematologic malignancies. Blood. 2014;123:2625–35.CrossRefGoogle Scholar
  90. 90.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.CrossRefGoogle Scholar
  91. 91.
    Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, Jena B, Dawson MJ, Kumaresan PR, Su S, Maiti S, Dai J, Moriarity B, Forget MA, Senyukov V, Orozco A, Liu T, Mccarty J, Jackson RN, Moyes JS, Rondon G, Qazilbash M, Ciurea S, Alousi A, Nieto Y, Rezvani K, Marin D, Popat U, Hosing C, Shpall EJ, Kantarjian H, Keating M, Wierda W, Do KA, Largaespada DA, Lee DA, Hackett PB, Champlin RE, Cooper LJ. Phase I trials using Sleeping Beauty to generate Cd19-specific car T cells. J Clin Invest. 2016;126:3363–76.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Oncoematologia PediatricaIRCSS, Ospedale Bambino GesùRomaItaly
  2. 2.Dipartimento di Scienze PediatricheUniversità di PaviaPaviaItaly

Personalised recommendations