Skip to main content

Haploidentical Transplants and NK Cell Alloreactivity

  • Chapter
  • First Online:
  • 426 Accesses

Abstract

Allogeneic hematopoietic cell transplantation is the most powerful form of immunotherapy for neoplastic hematological diseases as well as selected nonmalignant hematological disorders. Matching donor and recipient at HLA level is crucial for optimal transplant outcomes with acceptable non-relapse mortality. However, only 25% of individuals have an HLA-identical sibling who could serve as donor. Alternative hematopoietic graft sources are HLA-matched unrelated volunteers, unrelated umbilical cord blood units, and HLA haplotype-mismatched (“haploidentical”) family members which are, however, associated with up to 40% NRM due to diverse combinations of graft failure, GvHD, hepatic sinusoidal obstruction syndrome, and infections. Donor-versus-recipient NK cell alloreactivity is now established as a key therapeutic element in T-cell-depleted haploidentical hematopoietic transplantation for acute myeloid leukemia. Under T-cell-replete protocols, the benefits of NK cell alloreactivity might be expected to be antagonized/obscured as was reported in unrelated donor and cord blood transplantation. The only exception so far documented is the haploidentical hematopoietic cell transplant trial with Treg/Tcon add-backs that, however, do not use any posttransplant pharmacologic immunosuppressive GvHD prophylaxis. In this chapter we will discuss the various methods used in studies to augment NK cell alloreactivity in haploidentical transplantation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martelli MF, Di Ianni M, Ruggeri L, et al. “Designed” grafts for HLA-haploidentical stem cell transplantation. Blood. 2014;123:967–73.

    Article  CAS  Google Scholar 

  2. Huang X-J, Liu D-H, Liu K-Y, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant. 2006;38:291–7.

    Article  Google Scholar 

  3. Wang Y, Liu QF, LP X, et al. Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood. 2015;125:3956–62.

    Article  CAS  Google Scholar 

  4. Di Bartolomeo P, Santarone S, De Angelis G, et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood. 2013;121:849–57.

    Article  Google Scholar 

  5. Luznik L, O’Donnell P, Symons H, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.

    Article  CAS  Google Scholar 

  6. Ciurea SO, Zhang M-J, Bacigalupo A, et al. Haploidentical transplant with post-transplant cyclophosphamide versus matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.

    Article  CAS  Google Scholar 

  7. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.

    Article  CAS  Google Scholar 

  8. Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.

    Article  Google Scholar 

  9. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–9.

    CAS  PubMed  Google Scholar 

  10. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.

    Article  CAS  Google Scholar 

  11. Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40.

    Article  CAS  Google Scholar 

  12. Velardi A, Ruggeri L, Mancusi A, et al. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol. 2009;21:525–30.

    Article  CAS  Google Scholar 

  13. Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9.

    Article  CAS  Google Scholar 

  14. Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5:201–14.

    Article  CAS  Google Scholar 

  15. Orr MT, Lanier LL. Natural killer cell education and tolerance. Cell. 2010;142:847–56.

    Article  CAS  Google Scholar 

  16. Joncker NT, Raulet DH. Regulation of NK cell responsiveness to achieve self- tolerance and maximal responses to diseased target cells. Immunol Rev. 2008;224:85–97.

    Article  CAS  Google Scholar 

  17. Elliott JM, Yokoyama WM. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 2011;32:364–72.

    Article  CAS  Google Scholar 

  18. Fernandez NC, Treiner E, Vance RE, et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood. 2005;105:4416–23.

    Article  CAS  Google Scholar 

  19. Anfossi N, Andre P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25:331–42.

    Article  CAS  Google Scholar 

  20. Haas P, Loiseau P, Tamouza R, et al. NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2011;117:1021–9.

    Article  CAS  Google Scholar 

  21. Mancusi A, Ruggeri L, Urbani E, et al. Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces non-relapse mortality. Blood. 2015;125:3173–82.

    Article  CAS  Google Scholar 

  22. Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–50.

    Article  CAS  Google Scholar 

  23. Leung W, Iyengar R, Triplett B, et al. Comparison of killer Ig-like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J Immunol. 2005;174:6540–5.

    Article  CAS  Google Scholar 

  24. Hsu KC, Gooley T, Malkki M, et al. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol Blood Marrow Transplant. 2006;12:828–36.

    Article  CAS  Google Scholar 

  25. Hsu KC, Keever-Taylor CA, Wilton A, et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood. 2005;105:4878–84.

    Article  CAS  Google Scholar 

  26. Hsu KC, Pinto-Agnello C, Gooley T, et al. Hematopoietic stem cell transplantation: killer immunoglobulin-like receptor component. Tissue Antigens. 2007;69:42–5.

    Article  Google Scholar 

  27. Miller JS, Cooley S, Parham P, et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood. 2007;109:5058–61.

    Article  CAS  Google Scholar 

  28. Chen DF, Prasad VK, Broadwater G, et al. Differential impact of inhibitory and activating killer Ig-like receptors (KIR) on high-risk patients with myeloid and lymphoid malignancies undergoing reduced intensity transplantation from haploidentical related donors. Bone Marrow Transplant. 2012;47:817–23.

    Article  CAS  Google Scholar 

  29. Kasamon YL, Luznik L, Leffell MS, et al. Significance of missing inhibitory KIR ligands in nonmyeloablative, HLA-haploidentical (haplo) BMT with post-transplantation high-dose cyclophosphamide (PT/Cy). ASH annual meeting abstracts. Blood. 2011;118:840.

    Google Scholar 

  30. AT B¨r, Schaffer M, Fauriat C, et al. NK cells expressing inhibitory KIR for nonself-ligands remain tolerant in HLA-matched sibling stem cell transplantation. Blood. 2010;115:2686–94.

    Article  Google Scholar 

  31. Pende D, Marcenaro S, Falco M, et al. Antileukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood. 2009;113:3119–29.

    Article  CAS  Google Scholar 

  32. Davies SM, Ruggeri L, DeFor T, et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Blood. 2002;100:3825–7.

    Article  CAS  Google Scholar 

  33. Lowe EJ, Turner V, Handgretinger R, et al. T-cell alloreactivity dominates natural killer cell alloreactivity in minimally T-cell-depleted HLA-nonidentical paediatric bone marrow transplantation. Br J Haematol. 2003;123:323–6.

    Article  Google Scholar 

  34. Bornhauser M, Schwerdtfeger R, Martin H, et al. Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood. 2004;103:2860–1.

    Article  Google Scholar 

  35. Farag SS, Bacigalupo A, Eapen M, et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the Center for International Blood and Marrow Transplant Research, the European Blood and Marrow Transplant Registry, and the Dutch registry. Biol Blood Marrow Transplant. 2006;12:876–84.

    Article  CAS  Google Scholar 

  36. Kröger N, Binder T, Zabelina T, et al. Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation. Transplantation. 2006;82:1024–30.

    Article  Google Scholar 

  37. Yabe T, Matsuo K, Hirayasu K et al.; Japan Marrow Donor Program. Donor killer immunoglobulin-like receptor (KIR) genotype–patient cognate KIR ligand combination and antithymocyte globulin preadministration are critical factors in outcome of HLA-C-KIR ligand-mismatched T cell-replete unrelated bone marrow transplantation. Biol Blood Marrow Transplant 2008;14:75–87.

    Google Scholar 

  38. Giebel S, Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood. 2003;102:814–9.

    Article  CAS  Google Scholar 

  39. Beelen DW, Ottinger HD, Ferencik S, et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood. 2005;105:2594–600.

    Article  CAS  Google Scholar 

  40. Elmaagacli AH, Ottinger H, Koldehoff M, et al. Reduced risk for molecular disease in patients with chronic myeloid leukemia after transplantation from a KIR-mismatched donor. Transplant. 2005;79:1741–7.

    Article  CAS  Google Scholar 

  41. Kröger N, Shaw B, Iacobelli S, et al. Comparison between antithymocyte globulin and alemtuzumab and the possible impact of KIR-ligand mismatch after dose-reduced conditioning and unrelated stem cell transplantation in patients with multiple myeloma. Br J Haematol. 2005;129:631–43.

    Article  Google Scholar 

  42. Dawson MA, Spencer A. Successful use of haploidentical stem-cell transplantation with KIR mismatch as initial therapy for poor-risk myelodysplastic syndrome. J Clin Oncol. 2005;23:4473–4.

    Article  Google Scholar 

  43. Willemze R, Rodrigues CA, Labopin M, et al. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 2009;23:492–500.

    Article  CAS  Google Scholar 

  44. Brunstein CG, Wagner JE, Weisdorf DJ, et al. Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplant depends on transplantation conditioning intensity. Blood. 2009;113:5628–34.

    Article  CAS  Google Scholar 

  45. Ciceri F, Bonini C, Stanghellini MTL, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a nonrandomised phase I–II study. Lancet Oncol. 2009;10:489–500.

    Article  Google Scholar 

  46. Vago L, Forno B, Sormani MP, et al. Temporal, quantitative, and functional characteristics of single-KIR-positive alloreactive natural killer cell recovery account for impaired graft-versus-leukemia activity after haploidentical hematopoietic stem cell transplantation. Blood. 2008;112:3488–99.

    Article  CAS  Google Scholar 

  47. Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117:3921–8.

    Article  Google Scholar 

  48. Martelli MF, Di Ianni M, Ruggeri L, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124:638–44.

    Article  CAS  Google Scholar 

  49. Orleans-Lindsay JK, Barber LD, et al. Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function: implications for the adoptive immunotherapy of leukaemia. Clin Exp Immunol. 2001;126:403–11.

    Article  CAS  Google Scholar 

  50. Rood JJ, Eernisse JG, van Leeuwen A, et al. Leucocyte antibodies in sera of pregnant women. Nature. 1958;181:1735–6.

    Article  Google Scholar 

  51. Van Kampen CA, Versteeg-van der Voort Maarschalk MF, Langerak-Langerak J, et al. Pregnancy can induce long-persisting primed CTLs specific for inherited paternal HLA antigens. Hum Immunol. 2001;62:201–7.

    Article  Google Scholar 

  52. Verdijk RM, Kloosterman A, Pool J, et al. Pregnancy induces minor istocompatibility antigen-specific cytotoxic T cells: implications for stem cell transplantation and immunotherapy. Blood. 2004;103:1961–4.

    Article  CAS  Google Scholar 

  53. Stern M, Ruggeri L, Mancusi A, et al. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112:2990–5.

    Article  CAS  Google Scholar 

  54. Handgretinger R. Donor choice in haploidentical stem cell transplantation: fetal microchimerism is associated with better outcome in pediatric leukemia patients. Bone Marrow Transplant. 2015;50:1367–70.

    Article  Google Scholar 

  55. Wang Y, Chang YJ, LP X, et al. Who is the best donor for a related HLA haplotype-mismatched transplant? Blood. 2014;124:843–50.

    Article  CAS  Google Scholar 

  56. Velardi A, Ziagkos D, van Biezen A, et al. Mother donors improve outcomes after HLA haploidentical hematopoietic transplantation: a retrospective study by the Cell Therapy and Immunobiology Working Party of the EBMT. Paper presented as a poster at EBMT 2016, Valencia, Spain; 2016.

    Google Scholar 

  57. Federmann B, Bornhauser M, Meisner C, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: a phase II study. Haematologica. 2012;97:1523–931.

    Article  CAS  Google Scholar 

  58. Handgretinger R, Lang P, Feuchtinger TF, et al. Transplantation of TcRab/CD19 depleted stem cells from haploidentical donors: robust engraftment and rapid immune reconstitution in children with high risk leukemia. ASH annual meeting abstracts 2011;118:1005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Velardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velardi, A. (2018). Haploidentical Transplants and NK Cell Alloreactivity. In: Ciurea, S., Handgretinger, R. (eds) Haploidentical Transplantation. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-54310-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54310-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54309-3

  • Online ISBN: 978-3-319-54310-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics