Skip to main content

The Seagrass Ecosystem

  • Chapter
  • First Online:
Fungi in Coastal and Oceanic Marine Ecosystems
  • 1515 Accesses

Abstract

Sublittoral seagrass vegetations are important primary producers in coastal waters. Several facultatively marine fungi as well as labyrinthulomycetes might live as endophytes within living seagrass. Some fungi, termed as DSEs, form intimate associations within rhizomes of the seagrass Posidonia oceanica. Fungi may also form rhizosphere associations with seagrasses. The straminipilan fungus Labyrinthula zosterae is a pathogen of the seagrass Zostera marina and caused massive devastations in many parts of the world. Endophytic fungi that were present in living plants as well as obligate and facultative marine fungi from the environment colonize and decompose dead seagrass tissues and contribute to the living organic matter of the detritus. Thraustochytrids are common in seagrass sediments. The role of fungi in decomposition of seagrass detritus and their role in detrital dynamics are poorly known.

There’s nothing wrong with enjoying looking at the surface of the ocean itself, except that when you finally see what goes on underwater, you realize that you’ve been missing the whole point of the ocean. Staying on the surface all the time is like going to the circus and staring at the outside of the tent.

Dave Barry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alva P, McKenzie EHC, Pointing SB, Pena-Muralla R, Hyde KD (2002) Do seagrasses harbour endophytes? In: Hyde KD (ed) Fungi in marine environment, Fungal Diversity Research series, vol 7. Fungal Diversity Press, Hong Kong, pp 167–178

    Google Scholar 

  • Bigelow DM, Olsen MW, Gilbertson RL (2005) Labyrinthula terrestris sp. nov., a new pathogen of turf grass. Mycologia 97:185–190

    Article  CAS  PubMed  Google Scholar 

  • Blum LK, Mills AL, Zieman JC, Zieman RT (1988) Abundance of bacteria and fungi in seagrass and mangrove detritus. Mar Ecol Prog Ser 42:73–78

    Article  Google Scholar 

  • Bongiorni L, Mirto S, Pusceddu A, Danovaro R (2005a) Response of benthic protozoa and thraustochytrid protists to fish-farm impact in seagrass (Posidonia oceanica) and soft bottom sediments. Microb Ecol 50:268–276

    Article  CAS  PubMed  Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005b) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  • Buchsbaum RN, Short FT, Cheney DP (1990) Phenolic-nitrogen interactions in eelgrass, Zostera marina L.: possible implications for disease resistance. Aquat Bot 37:291–297

    Article  CAS  Google Scholar 

  • Burdick DM, Short FT, Wolf J (1993) An index to assist and monitor the progression of wasting disease in eelgrass Zostera marina. Mar Ecol Prog Ser 94:83–90

    Article  Google Scholar 

  • Craven KD, Peterson PD, Windham DE, Mitchell TK, Martin SB (2005) Molecular identification of the turf grass rapid blight pathogen. Mycologia 97:160–166

    Article  CAS  PubMed  Google Scholar 

  • Cuomo V, Vazanella F, Fresi E, Cinelli F, Mazella L (1985) Fungal flora of Posidonia oceanica and its ecological significance. Trans Br Mycol Soc 84:35–40

    Article  Google Scholar 

  • den Hartog C (1987) Wasting disease and other dynamic phenomena in Zostera beds. Aquat Bot 27:3–14

    Article  Google Scholar 

  • Duarte CM, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766

    Article  CAS  Google Scholar 

  • Duffy E (2006) Biodiversity and the functioning of seagrass ecosystems. Mar Ecol Prog Ser 311:233–250

    Article  Google Scholar 

  • Durako MJ, Kuss KM (1994) Effects of Labyrinthula infection on the photosynthetic capacity of Thalassia testudinum. Bull Mar Sci 54:727–732

    Google Scholar 

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the Sea Grass Thalassia testudinum against Zoosporic fungi. Appl Environ Microbiol 64:1490–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kuo J, McComb AJ, Cambridge ML (1981) Ultrastructure of the seagrass rhizosphere. New Phytol 89:139–143

    Article  Google Scholar 

  • Leaño EM, Damare V (2012) Labyrinthulomycota. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. de Gruyter, Berlin, Boston, pp 245–249

    Google Scholar 

  • Muehlstein LK, Porter D, Short FT (1988) Labyrinthula sp, a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar Biol 99:465–472

    Article  Google Scholar 

  • Panno L, Voyron S, Anastasi A, Sartor RM, Varese GC (2011) Biodiversity of marine fungi associated with the seagrass Posidonia oceanica: an ecological and biotechnological perspective. Biol Mar Mediterr 18:85–88

    Google Scholar 

  • Quick JA Jr (1974) Labyrinthuloides schizochytrops nsp, a new marine Labyrinthula with spheroid “spindle” cells. Trans Am Microsc Soc 93:344–365

    Article  Google Scholar 

  • Ralph PJ, Short FT (2002) Impact of the wasting disease pathogen, Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. Mar Ecol Prog Ser 226:265–271

    Article  Google Scholar 

  • Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichi S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45

    Article  Google Scholar 

  • Sakayaroj J, Preedanon S, Phongpaichit S, Buatong J, Chaowalit P, Rukachaisirikul V (2012) Diversity of endophytic and marine-derived fungi associated with marine plants and animals. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 291–328

    Google Scholar 

  • Sathe V, Raghukumar S (1991) Fungi and their biomass in detritus of the seagrass Thalassia hemprichii (Ehrenberg) Ascherson. Bot Mar 34:272–277

    Article  Google Scholar 

  • Short FT, Mathieson AC, Nelson JI (1986) Recurrence of the eelgrass wasting disease at the border of New Hampshire and Maine, USA. Mar Ecol Prog Ser 29:89–92

    Article  Google Scholar 

  • Steele L, Caldwell M, Boettcher AA, Arnold T (2005) Seagrass-pathogen interactions: “pseudo-induction” of turtle grass phenolics near wasting disease lesions. Mar Ecol Prog Ser 303:123–131

    Article  Google Scholar 

  • Sullivan BK, Sherman TD, Damare VS, Lilje O, Gleason FH (2013) Potential roles of Labyrinthula spp in global seagrass population declines. Fungal Ecol 6:328–338

    Article  Google Scholar 

  • Torta L, Lo Piccolo S, Piazza G, Burruano S, Colombo P (2015) Lulwoana sp, a dark septate endophyte in roots of Posidonia oceanica (L) Delile seagrass. Plant Biol 17:505–511

    Article  CAS  PubMed  Google Scholar 

  • Traer K (1979) The consumption of Posidonia oceanica Delile by echinoids at the isle of Ischia. In: Jangou M, Balkema AA (eds) Proceedings of the European colloquium on echinoderms, pp 241–244

    Google Scholar 

  • Tutin TG (1938) The autecology of Zostera marina in relation to the wasting disease. New Phytol 37:50–71

    Article  Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanarayanan T (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65

    Article  Google Scholar 

  • Vohnik M, Borovec O, Kolařík M (2015a) Communities of cultivable root mycobionts of the seagrass Posidonia oceanica in the Northwest Mediterranean Sea are dominated by a hitherto undescribed pleosporalean dark septate endophyte. Microb Ecol 71:442–451

    Article  PubMed  Google Scholar 

  • Vohnik M, Borovec O, Župan I, Vondrášek D, Petrtýl M, Sudová R (2015b) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanic. Mycorrhiza 25:663–672

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). The Seagrass Ecosystem. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_7

Download citation

Publish with us

Policies and ethics