Skip to main content

Methods to Study Marine Fungi

  • Chapter
  • First Online:
Fungi in Coastal and Oceanic Marine Ecosystems

Abstract

Appropriate methods are necessary to study diversity, ecology, and physiology of marine fungi. Obligate marine fungi are cultured directly from their sporulating structures in decomposing wood and other substrates. Surface sterilization and plating as well as particle plating are useful methods to culture obligate and facultative marine fungi. Zoosporic fungi can be cultured using baiting methods. Fungi are generally identified based on their morphology, development, and life cycles. Molecular methods are helpful in authenticating identifications as well as in metagenomic studies of diversity. Mycelial fungi and labyrinthulomycetes can be detected in natural substrates and their biomass estimated using epifluorescence microscopy methods. Biochemical indicators such as ergosterol are useful for mycetaen fungi. Culturing of deep-sea fungi requires special methods and equipments. A variety of culture media is used to cultivate marine fungi.

Man is a tool-using animal. Without tools he is nothing, with tools he is all.

Thomas Carlyle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    Article  CAS  PubMed  Google Scholar 

  • Amend AS, Barshis DJ, Oliver TA (2012) Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME J 6:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SCC, Willcock S, Richards TAA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bills GF, Polishook JD (1994) Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia 86:187–198

    Article  Google Scholar 

  • Bremer GB (2000) Isolation and culture of thraustochytrids. In: Hyde KD, Pointing SB (eds) Marine mycology – a practical approach, Fungal Diversity Research Series, vol 1. Fungal Diversity Press, Hong Kong

    Google Scholar 

  • Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    Article  CAS  Google Scholar 

  • Cox SL, Hulston D, Maaset EW (2009) Cryopreservation of marine thraustochytrids (Labyrinthulomycetes). Cryobiology 59:363–365

    Article  CAS  PubMed  Google Scholar 

  • Cuadros-Orellana S, Leite LR, Smith A, Medeiros JD, Badotti F (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genomics Biol 3:110

    Google Scholar 

  • Damare V, Raghukumar S (2010) Association of the stramenopilan protists, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Mar Ecol Prog Ser 399:53–68

    Article  CAS  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006a) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res Pt I 53:14–27

    Article  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  CAS  PubMed  Google Scholar 

  • Fan KW, Vrijmoed LLP, EBG J (2002) Physiological studies of subtropical mangrove thraustochytrids. Bot Mar 45:50–57

    Article  Google Scholar 

  • Gessner MO, Newell SY (2001) Biomass, growth rate, and production of filamentous fungi in plant litter. In: Hurst CJ, Mc Inerne M, Stetzenbach L, Knudsen G, Walter M (eds) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, DC, pp 390–408

    Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitas A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Hatai K (2012) Diseases of fish and shell fish caused by marine fungi. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 15–52

    Chapter  Google Scholar 

  • Hatai K, Roza D, Nakamura K (2000) Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience 41:565–572

    Article  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    Article  CAS  PubMed  Google Scholar 

  • Hyde KD, Sarma VV (2000) Pictorial key to higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach. Fungal Diversity Press, Hong Kong, pp 205–270

    Google Scholar 

  • Hyde KD, Sarma VV, Jones EBG (2000) Morphology and taxonomy of higher marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology a practical approach. Fungal Diversity Press, Hong Kong, pp 172–204

    Google Scholar 

  • Jensen E (2014) Technical Review: In Situ Hybridization. Anat Rec 297:1349–1353

    Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Jones EBG, Choeyklin R (2007) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, London, pp 301–324

    Google Scholar 

  • Jones EBG, Hyde KD (1988) Methods for the study of marine fungi from the mangroves. In: Agate AD, Subramanian CV, Vannucci M (eds) Mangrove microbiology role of microorganisms in nutrient cycling of mangrove soils and waters. UNDP/UNESCO, New Dehli, India, pp 9–27

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Kohlmeyer J (1984) Tropical marine fungi. PSZNI Mar Ecol 5:329–378

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1991) Illustrated key to the filamentous higher marine fungi. Bot Mar 34:1–61

    Article  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrihzae. Mycol Res 92:486–488

    Article  Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate bearing deep-sea marine sediments in South China Sea. ISME J 1:75–762

    Article  Google Scholar 

  • Li W, Zhang T, Tang X, Wang B (2010) Oomycetes and fungi: important parasites on marine algae. Acta Oceanol Sin 29:74–81

    Article  CAS  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by highthroughput sequencing of amplified markers—a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78

    Article  CAS  PubMed  Google Scholar 

  • Menezes CBA, Bonugli-Santosa RC, Miquelettoa PB, Passarinia MRZ, Silvaa CHD, Justoa MR, Leala RR, Fantinatti-Garbogginia F, Oliveiraa VM, Berlinck RG, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Saõ Paulo state, Brazil. Microbiol Res 165:466–482

    Article  PubMed  Google Scholar 

  • Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121

    Google Scholar 

  • Müller U, Sengbusch P (1983) Visualization of aquatic fungi (Chytridiales) parasitizing on algae by means of induced fluorescence. Arch Hydrobiol 97:471–485

    Google Scholar 

  • Munn CB (2011) Marine microbiology: ecology and applications, 2nd edn. Garland Science, Taylor & Francis Group, New York & London

    Google Scholar 

  • Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, Heidelberg, pp 173–187

    Chapter  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments-the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Nakamura K, Nakamura M, Hatai K, Zafran (1995) Lagenidium infection in eggs and larvae of mangrove crab (Scylla serrata) produced in Indonesia. Mycoscience 36:399–404

    Article  Google Scholar 

  • Newell SY (1996b) The [HC]acetate-to-ergosterol method: factors for conversion from acetate incorporated to organic fungal mass synthesized. Soil Biol Biochem 28:681–683

    Article  CAS  Google Scholar 

  • Newell SY (2000) Methods for determining biomass and productivity of mycelial marine fungi. In: Hyde KD, Pointing SB (eds) Marine mycology – a practical approach. Fungal Diversity Press, Hong Kong, pp 69–91

    Google Scholar 

  • Newell SY (2001a) Multiyear patterns of fungal biomass dynamics and productivity within naturally decaying smooth cordgrass shoots. Limnol Oceanogr 46:573–583

    Article  Google Scholar 

  • Newell SY (2001b) Fungal biomass and productivity. In: Methods in microbiology, Vol 3. Academic Press, pp 357–372

    Google Scholar 

  • Newell SY, Fallon RD, Miller JD (1986) Measuring fungal biomass dynamics in standing-dead leaves of a salt-marsh vascular plant. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, New York, pp 19–25

    Google Scholar 

  • Pang K-L, Mitchell JI (2005) Molecular approaches for assessing fungal diversity in marine substrata. Bot Mar 48:332–347

    Article  CAS  Google Scholar 

  • Porter D (1990) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Raghukumar S (1988) Detection of the thraustochytrid protist Ulkenia visurgensis in a hydroid, using immunofluorescence. Mar Biol 97:253–258

    Article  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–136

    Article  Google Scholar 

  • Raghukumar C (2006) Algal-fungal interactions in the marine ecosystem: symbiosis to parasitism. In: Tewari A (ed) Recent advances on applied aspects of Indian marine algae with reference to global scenario, vol 1. Gujarat, Central Salt & Marine Chemicals Research Institute, pp 366–385

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar S, Schaumann K (1993) An epifluorescence microscopy method for direct detection and enumeration of the fungi-like marine protists, the thraustochytrids. Limnol Oceanogr 38:182–187

    Article  Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V (1994b) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Article  Google Scholar 

  • Raghukumar C, Damare S, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptions. Bot Mar 53:479–492

    Article  Google Scholar 

  • Rämä T, Davey ML, Nordén J, Halvorsen R, Blaalid R, Mathiassen GH, Alsos IG, Kauseru H (2016) Fungi sailing the Arctic Ocean: speciose communities in North Atlantic Driftwood as Revealed by high-throughput amplicon sequencing. Microb Ecol 72(2):295–304

    Article  PubMed  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG, Vrijmoed LLP, Abdel-Wahab MA (2005) A systematic reassessment of marine ascomycetes Swampomyces and Torpedospora. Bot Mar 48:395–406

    Article  Google Scholar 

  • Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. I. Field studies on decomposition of the brown alga Sargassum cinereum J Ag. Indian J Mar Sci 22:159–167

    CAS  Google Scholar 

  • Schoch CL, Sung GH, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW (2007) Marine fungal lineages in the Hypocreomycetidae. Mycol Res 111:154–162

    Article  PubMed  Google Scholar 

  • Shields JD (1990) Rhizophydium littoreum on the eggs of Cancer anthonyi: parasite or saprobe? Biol Bull 179:201–206

    Article  Google Scholar 

  • Spatafora J, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MC (2004) Practical mycology for industrial biotechnologists. Tata McGraw-Hill, New Delhi

    Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler AD, Dover CLV, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol 5:270–273

    Article  Google Scholar 

  • Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F et al (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  CAS  Google Scholar 

  • Tsirigoti A, Küpper F, Gachon C, Katsaros C (2014) Cyto skeleton organisation during the infection of three brown algal species, Ectocarpus siliculosus, Ectocarpus crouaniorum and Pylaiella littoralis, by the intracellular marine oomycete Eurychasma dicksonii. Plant Biol 16:272–281

    Article  CAS  PubMed  Google Scholar 

  • Van Dover CL, Ward ME, Scott JL, Underdown J, Anderson B, Gustafson C, Whalen M, Carnegie RB (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar Ecol 28:54e62

    Article  Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanarayanan T (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65

    Article  Google Scholar 

  • Vrijmoed LLP (2000) Isolation and culture of higher filamentous fungi. In: Hyde KD, Pointing SB (eds) Marine mycology – a practical approach, Fungal Divers Res Ser 1. Fungal Diversity Press, Hong Kong, pp 1–20

    Google Scholar 

  • Wallander H, Ekbladb A, Godbold DL, Johnson D, Bahra A, Baldriane P, Björkf RG, Kieliszewska-Rokickag B, Kjøllerh R, Kraigheri H, Plassardj C, Rudawska M (2013) Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils – a review. Soil Biol Biochem 57:1034–1047

    Article  CAS  Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  • Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen nov. Mycoscience 48:329–341

    Article  CAS  Google Scholar 

  • Zhang X-y, Tang G-l, Xu X-y, Nong X-h, Qi S-H (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9(10):e109118

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwirglmaier K (2005) Fluorescence in situ hybridisation (FISH) – the next generation. FEMS Microbiol Lett 246:151–158

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). Methods to Study Marine Fungi. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_15

Download citation

Publish with us

Policies and ethics