Skip to main content

Extreme Marine Environments

  • Chapter
  • First Online:

Abstract

The deep sea starts from below 200 m and is a region of high hydrostatic pressure, low temperature, and darkness. The deep biosphere below the surface of deep-sea sediments, the hypoxic and anoxic waters and sediments, polar environments, and hypersaline environments are other extreme environments. Obligate and facultative mycetaen marine fungi as well as labyrinthulomycetes inhabit such environments. Marine lignicolous fungi grow in wood deposited in the deep sea or lodged in polar waters. Fungi grow within calcareous shells of deep-sea molluscs. Aplanochytrids inhabit mesozooplankton in deep-sea waters. Fungi have been cultured from the deep biosphere, hypoxic and anoxic waters and sediments, polar waters, and sea ice and from salterns, the Dead Sea, and other hypersaline environments. Thraustochytrids are found in sea ice. Actively growing fungal hyphae have been detected in all extreme environments. Fungi have become adapted to conditions of extreme environments. Facultative marine fungi are adept at growing under high hydrostatic pressure and cold temperature and are found in deep-sea sediment humic aggregates. Fungi from OMZs are capable of denitrification. Many fungi, such as black yeasts and others from hypersaline environments, can successfully grow in extreme salinity conditions and adjust their intracellular osmotic potential by synthesizing polyols. Metagenomic studies have revealed a number of novel fungal lineages in all extreme environments.

We need the tonic of wildness…At the same time that we are earnest to explore and learn all things, we require that all things be mysterious and unexplorable, that land and sea be indefinitely wild, unsurveyed and unfathomed by us because unfathomable. We can never have enough of nature.

Henry David Thoreau, Walden: Or, Life in the Woods

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander E, Stock A, Breiner H-W, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  CAS  PubMed  Google Scholar 

  • Amon JP (1978) Thraustochytrids and labyrinthulids of terrestrial, aquatic and hypersaline environments of the Great Salt Lake, USA. Mycologia 70:1299–1301

    Article  Google Scholar 

  • Asmaniadou A, Lipiatou E (eds) (2000) Extreme marine environments. European Commission Community Research Report, Luxembourg

    Google Scholar 

  • Bahnweg G, Sparrow FK (1974a) Four new species of Thraustochytrium from Antaractic regions, with notes on the distribution of zoosporic fungi in the Antarctic marine ecosystems. Am J Bot 61:754–766

    Article  Google Scholar 

  • Bahnweg G, Sparrow FK (1974b) Occurrence, distribution and kinds of zoosporic fungi in Subantarctic and Antarctic waters. Veröff Inst Meeresforsch Bremerh Suppl 5:149–157

    Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SCC, Willcock S, Richards TAA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodaker I, Sharon I, Suzuki MT, Feingersch R, Shmoish M, Béja R (2010) Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME J 4:399–407

    Article  PubMed  Google Scholar 

  • Brad T, Braster M, van Breukelen BM, van Straalen NM, Roling WFM (2008) Eukaryotic diversity in an anaerobic aquifer polluted with land fill leachate. Appl Environ Microbiol 74:3959–3968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond 265:1461–1465

    Article  CAS  Google Scholar 

  • Burgaud G, Calvez TL, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol 73:121–133

    CAS  PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimermane N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79

    Article  Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166

    Article  CAS  PubMed  Google Scholar 

  • Colaço A, Raghukumar C, Mohandass C, Cardigos F, Santos RS (2006) Effect of shallow-water venting in Azores on a few marine biota. Cah Biol Mar 47:359–364

    Google Scholar 

  • Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu’u Seamount, Samoa. Geomicrobiol J 26:597–605

    Article  CAS  Google Scholar 

  • Damare S, Raghukumar C (2008a) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 56:168–177

    Article  PubMed  Google Scholar 

  • Damare V, Raghukumar S (2008b) Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, in relation to transparent exopolymeric particles (TEPs). FEMS Microbiol Ecol 25:40–49

    Article  CAS  Google Scholar 

  • Damare V, Raghukumar S (2010) Association of the stramenopilan protists, the aplanochytrids, with zooplankton of the equatorial Indian Ocean. Mar Ecol Prog Ser 399:53–68

    Article  CAS  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006a) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res Pt I 53:14–27

    Article  Google Scholar 

  • Dassarma P, Klebahn G, Klebahn H (2010) Translation of Henrich Klebahn’s ‘Damaging agents of the klippfish – a contribution to the knowledge of the salt-loving organisms’. Saline Syst 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478

    Article  CAS  PubMed  Google Scholar 

  • Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS (2013) The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic link ages to seafloor and water column habitats. Front Microbiol 4:124. doi:10.3389/fmicb201300124. eCollection 2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupont J, Magnin S, Rousseau F, Zbinden M, Frebourg G, Samadi S, Richer de Forges B, Jones EBG (2009) Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu Islands in the deep Pacific Ocean. Mycol Res 113:1351–1364

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera GA, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  CAS  PubMed  Google Scholar 

  • Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 91–102

    Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50:408–417

    Article  CAS  PubMed  Google Scholar 

  • Gaertner A (1982) Lower marine fungi from the Northwest African upwelling areas and from the Atlantic off Portugal. Meteor Forsch Ergebn 34:9–30

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–340

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitas A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Höhnk W (1969) Über den pilzlichen Befall Kalkiger Hartteile von Meerestieren. Ber Dtsch Wiss Komm Meeresforsch 20:129–140

    Google Scholar 

  • Hollibaugh JT, Lovejoy C, Murray AE (2007) Microbiology in Polar Oceans. Oceanography 20:14–144

    Article  Google Scholar 

  • Horner R, Schrader GC (1962) Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485–503

    Google Scholar 

  • Jebaraj CS, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109

    Article  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  CAS  PubMed  Google Scholar 

  • Jebraj CS, Forster D, Kauff F, Stoeck T (2012) Molecular diversity of fungi from marine Oxygen-Deficient Environments (ODEs). In: Raghukumar C (ed) Biology of marine fungi. Springer, Germany, pp 189–208

    Chapter  Google Scholar 

  • Jones EBG, Fell JW (2012) Basidiomycota. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter GmbH & Co KG, Berlin/Boston, pp 49–63

    Chapter  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  PubMed  CAS  Google Scholar 

  • Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J (1977) New genera and species of higher fungi from the deep sea (1615-5315m). Rev Mycol 41:189–206

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlemyer B (1988) Halographis (Opegraphales) a new endolithic lichenoid from corals and snails. Can J Bot 66:1138–1141

    Article  Google Scholar 

  • Kristiansen HB (2014) Characterization of marine fungal communities using next generation sequencing techniques. Master’s Thesis, University of Svalbard. http://urnnbno/URN:NBN:no-44144

    Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts-a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate bearing deep-sea marine sediments in South China Sea. ISME J 1:75–762

    Article  CAS  Google Scholar 

  • Lara E, Moreira D, López-Garcia P (2010) The environmental clade LKM11 and Rozella form the deepest branchingclade of Fungi. Protist 161:116–121

    Article  CAS  PubMed  Google Scholar 

  • Le Calvez T, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin L (2005) Ecology of cold seep ecosystems: interactions of fauna with flow, chemistry and microbes. Oceanogr Mar Biol Annu Rev 43:1–46

    Google Scholar 

  • Li L, Kato C, Horikoshi K (1999) Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8:659–677

    Article  Google Scholar 

  • López-García P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–660

    Article  PubMed  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100(2):697–702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-García P, Vereshchaka A, Mozeira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  CAS  Google Scholar 

  • Lorenz R, Molitoris HP (1997) Cultivation of fungi under simulated deep-sea conditions. Mycol Res 11:1355–1365

    Article  Google Scholar 

  • Manohar CS, Raghukumar C (2013) Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol Lett 341:69–78

    Article  CAS  PubMed  Google Scholar 

  • Manohar CS, Boekhout T, Muller WH, Stoeck T (2014) Tritirachium candoliense sp. nov., a novel basidiomycetous fungus isolated from the anoxic zone of the Arabian Sea. Fungal Biol 118:139–149

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Castresana J, Balague V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió C (2004a) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massana R, Balague V, Guillou L, Pedros-Alio C (2004b) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  PubMed  Google Scholar 

  • Meyers SP, Reynolds ES (1960) Occurrence of lignicolous fungi in Northern Atlantic and Pacific marine localities. Can J Bot 38:217–226

    Article  Google Scholar 

  • Molitoris HP, Buchalo AS, Kurchenko I, Nevo E, Rawal BS, Wasser SP, Oren A (2000) Physiological diversity of the first filamentous fungi isolated from the hypersaline Dead Sea. In: Hyde DK, Ho WH, Pointing SB (eds) Aquatic mycology across the millennium, vol 5. Fungal Diversity Press, Hong Kong, pp 55–70

    Google Scholar 

  • Moreira D, López-García P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558

    Article  CAS  PubMed  Google Scholar 

  • Munn CB (2011) Marine microbiology: ecology and applications, 2nd edn. Garland Science, Taylor & Francis Group, New York & London

    Google Scholar 

  • Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, Heidelberg, pp 173–187

    Chapter  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2001) Rhodotorula lamellibrachii sp nov, a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay and its phylogenetic analysis A van Leeuw. J Microbiol 80:317–323

    CAS  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Horikoshi K (2003) Rhodotorula benthica sp nov and Rhodotorula calyptogenae sp nov, novel yeast species from animals collected from the deep-sea floor, and Rhodotorula lysiniphila sp nov, which is related phylogenetically. Int J Syst Evol Microbiol 53:897–903

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments-the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Naganuma T, Kimura H, Karimoto R, Pimenov NV (2006) Abundance of planktonic thraustochytrids and bacteria and the concentration of particulate ATP in the Greenland and Norwegian Seas. Polar Biosci 20:37–45

    CAS  Google Scholar 

  • Naqvi SWA (1994) Denitrification processes in the Arabian Sea. Proc Indian Acad Sci Earth Planet Sci 103:279–300

    CAS  Google Scholar 

  • Naqvi SWA, Naik H, Pratihary A, D’Souza W, Narvekar PV, Jayakumar DA (2006) Coastal versus open-ocean denitrification in the Arabian Sea. Biogeosciences 3:621–633

    Article  CAS  Google Scholar 

  • Nazareth S (2014) The world of halophilic fungi. Kavaka 42:131–144

    Google Scholar 

  • Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, Donnell AGO, Dennis PG (2015) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6:182–186

    Google Scholar 

  • Oren A (1999) Microbiological studies in the Dead Sea: future challenges toward the understanding of life at the limit of salt concentrations. Hydrobiologia 405:1–9

    Article  CAS  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Gunde-Cimerman N (2012) Fungal life in the Dead Sea. In: Raghukumar C (ed) Biology of marine fungi. Springer, Germany, pp 89–114

    Google Scholar 

  • Pang K-L, Chow RKK, Chan C-W, Vrijmoed LLP (2010) Diversity and physiology of marine lignicolous fungi in Arctic waters: a preliminary account. Polar Res 30:5859–5863

    Article  Google Scholar 

  • Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Poulicek M, Machiroux R, Toussaint C (1986) Chitin diagenesis in deep-water sediments. In: Muzzarelli R et al (eds) Chitin in nature and technology. Plenum Press, New York, pp 523–530

    Chapter  Google Scholar 

  • Pugh GJF, Allsopp D (1982) Microfungi in Signy Island, South Orkney Islands. Brit Antarct Surv Bull 57:55–67

    Google Scholar 

  • Pugh GJF, Jones EBG (1986) Antarctic marine fungi: a preliminary account. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 323–330

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35

    Google Scholar 

  • Raghukumar S (2009) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  Google Scholar 

  • Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15:153–163

    Article  Google Scholar 

  • Raghukumar S, Raghukumar C (1999) Thraustochytrid fungoid protists in faecal pellets of the tunicate Pegea confoederata, their tolerance to deep-sea conditions and implication in degradation processes. Mar Ecol Prog Ser 190:133–140

    Article  Google Scholar 

  • Raghukumar C, Raghukumar S, Sharma S, Chandramohan D (1992) Endolithic fungi from deep-sea calcareous substrata Isolation and laboratory studies. In: Desai BN (ed) Oceanography of the Indian Ocean. Oxford & IBH, New Delhi, pp 3–9

    Google Scholar 

  • Raghukumar S, Ramaiah N, Raghukumar C (2001) Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquat Microb Ecol 24:175–186

    Article  Google Scholar 

  • Raghukumar C, Raghukumar S, Sheelu G, Gupta SM, Nath BN, Rao BR (2004b) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res, Part I 51:1759–1768

    Article  CAS  Google Scholar 

  • Raghukumar C, Mohandass C, Cardigo F, Santos RS, D’Costa PM, Colaço A (2008a) Assemblage of benthic diatoms and culturable heterotrophs in shallow-water hydrothermal vent of the D João de Castro Seamount, Azores in the Atlantic Ocean. Curr Sci 95:1715–1723

    CAS  Google Scholar 

  • Raghukumar C, Damare S, Singh P (2010) A review on deep-sea fungi: occurrence, diversity and adaptions. Bot Mar 53:479–492

    Article  Google Scholar 

  • Rämä T, Nordén J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol 8:46–58

    Article  Google Scholar 

  • Rämä T, Davey ML, Nordén J, Halvorsen R, Blaalid R, Mathiassen GH, Alsos IG, Kauseru H (2016) Fungi sailing the Arctic Ocean: speciose communities in North Atlantic Driftwood as Revealed by high-throughput amplicon sequencing. Microb Ecol 72(2):295–304

    Article  PubMed  CAS  Google Scholar 

  • Rédou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

    Article  Google Scholar 

  • Riemann F, Schaumann K (1993) Thraustochytrid protists in Antarctic fast ice? Antarct Sci 5:279–280

    Article  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2002) Introduction to food- and airborne fungi, 6th edn. Centraalbureau voor Schimmelcultures, Baarn

    Google Scholar 

  • Savin MC, Martin JL, LeGresley M, Giewat M, Rooney-Varga J (2004) Plankton diversity in the Bay of Fundy as measured by morphological and molecular methods. Microb Ecol 48:51–65

    Article  CAS  PubMed  Google Scholar 

  • Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, Zalar P, de Hoog GS, Crous PW (2007) Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud Mycol 58:105–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N et al (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C (2014) Diversity and physiology of deep-sea yeasts: a review. Kavaka 43:50–63

    Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers 40:89–102

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61:507–517

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Meena RM, Verma P, Shouche Y (2012a) Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol 5:543–553

    Article  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2012c) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667

    Article  CAS  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM (2006) Microbial diversity in the deep sea and the underexplored “rarebiosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow FK Jr (1969) Zoosporic marine fungi from the Pacific Northwest (USA). Arch Microbiol 66:129–146

    Google Scholar 

  • Stief P, Fuchs-Ocklenburg S, Kamp A, Manohar CS, Houbraken J, Boekhout T, de Beer D, Stoeck T (2014) Dissimilatory nitrate reduction by Aspergillus terreus isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol 14:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stock A, Jürgens K, Bunge J, Stoeck T (2009) Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat Microb Ecol 55:267–284

    Article  Google Scholar 

  • Stoeck T, Epstein SS (2003) Novel eukaryotic lineages inferred from small subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  CAS  PubMed  Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans, their physics, chemistry, and general biology. Prentice-Hall, New York

    Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takami H (1999) Isolation and characterization of microorganisms from deep-sea mud. In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea environments. Springer, Tokyo, pp 3–26

    Chapter  Google Scholar 

  • Takasaki K, Shoun H, Yamaguchi M, Takeo K, Nakamura A, Hoshino T (2004) Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol – role of acetyl CoA synthetase in anaerobic ATP synthesis. J Biol Chem 279:12414–12420

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane see. Extremophiles 10:165–169

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576

    Article  CAS  PubMed  Google Scholar 

  • Thaler AD, Dover CLV, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol 5:270–273

    Article  Google Scholar 

  • Tubaki K, Asano I (1965) Additional species of fungi isolated from the Antarctic materials JARE 1956–1962. Sci Rep Ser E 27:1–14

    Google Scholar 

  • Turner RD (1973) Wood-boring bivalves, opportunistic species in the deep sea. Science 180:1377–1379

    Article  CAS  PubMed  Google Scholar 

  • van der Wielen PW, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  CAS  Google Scholar 

  • Van Dover CL, Ward ME, Scott JL, Underdown J, Anderson B, Gustafson C, Whalen M, Carnegie RB (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar Ecol 28:54e62

    Article  CAS  Google Scholar 

  • van Hannen EJ, Mooij W, van Agterveld MP, Gons HJ, Laanbroek HJ (1999) Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:2478–2484

    PubMed  PubMed Central  Google Scholar 

  • Vaupotič T, Plemenitaš A (2007) Differential gene expression and HogI interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ventosa A, Arahal DR (2002) Physico-chemical characteristics of hypersaline environments and their biodiversity. In: Encyclopedia of life support system. Paris: EOLSS Publishers. http://www.eolss.net/sample-chapters/c03/e6-73-04-01.pdf

  • Wang FP, Lu SL, Orcutt B, Xie W, Chen Y, Xiao X, Edwards K (2013) Discovering the roles of subsurface microorganisms: progress and future of deep biosphere investigation. Chin Sci Bull 58:456–467

    Article  Google Scholar 

  • Warren BA (1994) Context of the suboxic layer in the Arabian Sea. Proc Indian Acad Sci Earth Planet Sci 103:301–314

    CAS  Google Scholar 

  • Wasser SP, Grishkan I, Kis-Papo T, Buchalo AS, Volz PA, Gunde-Cimerman N, Zalar P, Nevo E (2003) Species diversity of the Dead Sea fungi. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea. ARG Gantner Verlag, Ruggell

    Google Scholar 

  • Webster J, Weber RKS (2007) Introduction to fungi. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • West AJ, Lin C-W, Lin T-C, Hilton RG, Liu S-H, Chang C-T, Lin K-C, Galy A, Sparkes RB, Hoviusf N (2011) Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnol Oceanogr 56:77–85

    Article  Google Scholar 

  • Xu W, Pang K-L, Luo Z-H (2014) High fungal diversity and abundance recovered in the deep-sea sediments of the pacific ocean. Microb Ecol 68:688–698

    Article  CAS  PubMed  Google Scholar 

  • Zajc J, Zalar P, Plemenitas A, Gunde-Cimerman N (2012) The Mycobiota of the Salterns. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 133–158

    Chapter  Google Scholar 

  • Zalar P, Gunde-Cimerman N (2014) Cold-adapted yeasts in Arctic Habitats. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts biodiversity, adaptation strategies and biotechnological significance. Springer, Berlin, Heidelberg

    Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005a) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl et ord nov). Antonie Van Leeuwenhoek 87:311–328

    Article  CAS  PubMed  Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005b) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zhang X-y, Tang G-l, Xu X-y, Nong X-h, Qi S-H (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9(10):e109118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Z, Takaya N, Nakamura A, Yamaguchi M, Takeo K, Shoun H (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277:1892–1896

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raghukumar, S. (2017). Extreme Marine Environments. In: Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-54304-8_12

Download citation

Publish with us

Policies and ethics