Skip to main content

MuSA: A Smart Wearable Sensor for Active Assisted Living

  • Conference paper
  • First Online:
Ambient Assisted Living (ForItAAL 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 426))

Included in the following conference series:

Abstract

This paper focuses at features introduced in the wearable sensor MuSA, to support behavioral analysis within the context of the HELICOPTER project, funded in the AAL European joint program. In particular, the wearable device performs two key function: on one hand it is used as a behavioral data source, continuously monitoring the quantity of user physical activity (through the energy expenditure index evaluation), location and posture; on the other hand, MuSA enables fusion of data coming from the environmental sensors, properly attributing actions on a particular sensor to a specific user in a multi-user environment. These function are carried out without the need of external devices (RFID tags etc.), but only relying on sensors embedded on the wearable device and its communication capabilities. Some sample results coming from pilot studies are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grossi F, Bianchi V, Matrella G, De Munari I, Ciampolini P (2009) Internet-based home monitoring and control. Assistive Technol Res Ser 25:309–313. doi:10.3233/978-1-60750-042-1-309

    Google Scholar 

  2. Matrella G, Grossi F, Bianchi V, De Munari I, Ciampolini P (2008) An environmental control hw/sw framework for daily living of elderly and disabled people. In: proceedings of the 4th IASTED international conference on telehealth and assistive technologies, Telehealth/AT, pp 87–92

    Google Scholar 

  3. Bianchi V, Grossi F, De Munari I, Ciampolini P (2011) MuSA: a multisensor wearable device for AAL. In: proceedings of 2011 federated conference on computer science and information systems, FedCSIS 2011:375–380

    Google Scholar 

  4. Bianchi, V, Guerra, C, De Munari, I, Ciampolini, P (2016) A wearable sensor for AAL-based continuous monitoring. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 9677: 383–394. doi:10.1007/978-3-319-39601-9_34

  5. Losardo A, Grossi F, Matrella G, De Munari I, Ciampolini P (2013) Exploiting AAL environment for behavioral analysis. Assistive Technol Res Ser 33:1121–1125. doi:10.3233/978-1-61499-304-9-1121

    Google Scholar 

  6. ZigBee Alliance website. Available at http://www.zigbee.org

  7. Grossi F, Bianchi V, Losardo A, Matrella G, De Munari I, Ciampolini P (2012) A flexible framework for ambient assisted living applications. In: proceedings of the IASTED international conference on assistive technologies, AT 2012:817-824. doi:10.2316/P.2012.766-007

  8. Steinhauer HJ, Mellin J (2015) Automatic early risk detection of possible medical conditions for usage within an AMI-system. In: Ambient Intelligence-Software and Applications, pp 13–21. doi:10.1007/978-3-319-19695-4_2

  9. Losardo A, Bianchi V, Grossi F, Matrella G, De Munari I, Ciampolini P (2011) Web-enabled home assistive tools. Assistive Technol Res Ser 29(448):455. doi:10.3233/978-1-60750-814-4-448

    Google Scholar 

  10. CC2531 datasheet. Available online at http://www.ti.com/product/cc2531

  11. LSM9DS0-iNEMO datasheet. Available online at http://www.st.com

  12. Bianchi V, Grossi F, Matrella G, De Munari I, Ciampolini P (2008) A wireless sensor platform for assistive technology applications. In: Proceedings of the 11th EUROMICRO conference on digital system design architectures, methods and tools, DSD 2008:809–816. doi:10.1109/DSD.2008.131

  13. Montalto F, Bianchi V, De Munari I, Ciampolini P (2014) Detection of elderly activity by the wearable sensor MuSA. Gerontechnology 13(2):264. doi:10.4017/gt.2014.13.02.354.00

    Google Scholar 

  14. Bianchi V, Grossi F, De Munari I, Ciampolini P (2009) Integrating fall detection into a home control system. Assistive Technol Res Ser 25:322–326. doi:10.3233/978-1-60750-042-1-322

    Google Scholar 

  15. Studenski S, Perera S et al (2011) Gait speed and survival in older adults. JAMA 305(1):50–58. doi:10.1001/jama.2010.1923

    Article  Google Scholar 

  16. Yang S, Li Q (2012) Inertial sensor-based methods in walking speed estimation: a systematic review. Sensors 12:6102–6116. doi:10.3390/s120506102

    Article  Google Scholar 

  17. Bouten C (1994) Assesment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc 26(12):1516–1523

    Article  Google Scholar 

  18. Tian Y, Denby B, Ahriz I, Roussel P (2013) Practical indoor localization using ambient RF. In: IEEE instrumentation and measurement technology conference, pp 1125–1129. doi:10.1109/I2MTC.2013.6555589

  19. Santinelli G, Giglietti R, Moschitta A (2009) Self-calibrating indoor positioning system based on ZigBee devices. IEEE Instrum Measur Technol Conf: 1205–1210. doi:10.1109/IMTC.2009.5168638

  20. Saxena A, Zawodniok M (2014) Indoor positioning system using geo-magnetic field. IEEE Instrum Measur Technol Conf: 572–577. doi:10.1109/IPIN.2012.6418947

  21. De Angelis G, De Angelis A, Dionigi M, Mongiardo M, Moschitta A, Carbone P (2014) An accurate indoor positioning-measurement system using mutually coupled resonating circuits. IEEE Instrum Measur Technol Conf: 844–849. doi:10.1109/I2MTC.2014.6860862

  22. Wilson J, Patwari N (2010) Radio tomographic imaging with wireless networks. IEEE Trans Mob Comput 9(10):621–632. doi:10.1109/TMC.2009.174

    Article  Google Scholar 

  23. Guerra C, Bianchi V, De Munari I, Ciampolini P (2015) Action tagging in an indoor environment for behavioural analysis purposes. In: proceedings of 37th annual international conference of the IEEE engineering in medicine and biology society, EMBC 2015: 5036–5039. doi:10.1109/EMBC.2015.7319523

  24. Guerra C, Bianchi V, De Munari I, Ciampolini P (2015) CARDEAGate: Low-cost, ZigBee-based localization and identification for AAL purposes. In 2015 IEEE international instrumentation and measurement technology conference, I2MTC 2015: 245–249. doi:10.1109/I2MTC.2015.7151273

Download references

Acknowledgements

This work has been supported by the Ambient Assisted Living Joint Program (HELICOPTER project, AAL-2012-5-150). Also, contributions by Claudia Bertoletti, Francesco Corradini, Giulia Ferretti and Nicola Garulli are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bianchi, V. et al. (2017). MuSA: A Smart Wearable Sensor for Active Assisted Living. In: Cavallo, F., Marletta, V., Monteriù, A., Siciliano, P. (eds) Ambient Assisted Living. ForItAAL 2016. Lecture Notes in Electrical Engineering, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-319-54283-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54283-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54282-9

  • Online ISBN: 978-3-319-54283-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics