Skip to main content
  • 509 Accesses

Abstract

This chapter discusses the different conversion methods available for biomass. Solid materials can produce a syngas with hydrogen, methane and carbon monoxide through high temperature gasification. Hydrogen and methane can be used in many different ways, while carbon monoxide is used for further reaction to other compounds like methanol. Pyrolysis is achieved when less oxidant, like oxygen or air, is used for heat generation, and normally also lower temperature. In addition, we get liquid fractions that are principally an oil, which can be further refined to bio-diesel. Biological reaction microorganisms can be used to easily convert degradable bio-components like household waste into bio-gas, or methane, where carbon dioxide is also produced. This is normally removed from the gas before use. Other biological methods include ethanol fermentation using bacteria or yeast. These fermentation methods can also be used in bio-refineries, where ethanol can be produced as well as many other chemicals like butanol, b2,3 butanediol, hydrogen, vanilla etc. Lignin components can also be produced and then further reacted to different medicines. Hydrogen produced biologically or through high temperature gasification can be separated using cryogenic or membrane separation methods, among others. Hydrogen then can be used to react with hydrocarbons containing oxygen, to remove the oxygen through hydration. This is also used in conventional refineries for fossil oil products, and could be used in the future to enhance the quality of bio-oils, to get properties similar to “normal fossil oil” products. Of course biomass may also be combusted in boilers, where both heat and power can be produced, as well as cooling. In this chapter we also discuss energy use in households and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AEBIOM: Chemical composition biomass AEBIOM: annual statistical report on the contribution of biomass to the energy systems in the EU27 (2014)

    Google Scholar 

  • Ahrens, T., Weiland, P.: Biomethane for future mobility. Landbauforschung Völkenrode. 1(57), 71–79 (2007)

    Google Scholar 

  • Alimuddin, Z., Alauddin, B.Z., Lahijani, P., Mohammadi, M., Mohamed, A.R.: Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew. Sust. Energ. Rev. 14, 2852–2862 (2010)

    Article  Google Scholar 

  • Alvira, P., Tomés-Peló, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)

    Article  Google Scholar 

  • Amidon, T.E.: The biorefinery in New York: woody biomass into commercial ethanol. Pulp Pap. Canada. 107, 47–50 (2006)

    Google Scholar 

  • Andersson, E.: Benefits of integrated upgrading of biofuels in bio refineries – systems analysis. PhD Thesis, Chalmers University of Technology, Sweden (2007)

    Google Scholar 

  • Andersson, E., Harvey, S.: System analysis of hydrogen production from gasified black liquor. Energy. 31(15), 3426–3434 (2006)

    Article  Google Scholar 

  • Arena, U.: Process and technological aspects of municipal solid waste gasification. A review. Waste Manage. (2011). doi:10.1016/j.wasman.2011.09.025

    Google Scholar 

  • Atsumi, S., Hanai, T., Liao, J.C.: Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 451(7174), 86–90 (2008)

    Article  Google Scholar 

  • Bassam el, N.: Energy plant species – their use and impact on environment and development. James& James, London (1998)

    Google Scholar 

  • Berglin, N., Lindblom, M., Ekbom, T.: Efficient production of methanol from biomass via black liquor gasification. TAPPI Engineering Conference, San Diego (2002)

    Google Scholar 

  • Berntsson, T., Axegård, P., Backlund, B., Samuelsson, Å., Berglin, N., Lindgren, K.: Swedish pulp mill biorefineries—a vision of future possibilities. Swedish Energy Agency (2006)

    Google Scholar 

  • Bjørsvik, H.-R., Minisci, F.: Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org. Process Res. Dev. 3(5), 330–340 (1999)

    Article  Google Scholar 

  • Boerjan, W., Ralph, J., Baucher, M.: Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003)

    Article  Google Scholar 

  • Bogetvedt, K., Hillstrom, R.: Upgrading of a sulfite mill to high alpha-cellulose production. In: Nashville, TN: Technical Association of the Pulp and Paper Industry (TAPPI), pp. 525–530 (1996)

    Google Scholar 

  • Brennan, L., Owende, P.: Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14(2), 557–577 (2010)

    Article  Google Scholar 

  • Brunnby experimental farm. Experiment with hemp production. http://www.forsoken.se/Konferens/Svea/2007/07%20-%20Hampa.pdf (2006). Accessed July 2012

  • Carlsson-Kanyama, A., González, A.D.: Potential contributions of food consumption patterns to climate change. Am. J. Clin. Nutr. 89(5), 1704–1709 (2009)

    Google Scholar 

  • Chandel, A.K., Chandrasekhar, G., Radhika, K., Ravinder, R., Ravindra, P.: Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnol. Mol. Biol. Rev. 6, 8–20 (2011)

    Google Scholar 

  • Cheremisinoff, N.P., Rezaiyan, J.: Gasification Technologies—A Primer for Engineers and Scientists. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  • Cherubini, F.: The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)

    Article  Google Scholar 

  • Cherubini, F., Ulgiati, S.: Crop residues as raw materials for biorefinery systems – a LCA case study. Appl. Energy. 87, 47–57 (2010)

    Article  Google Scholar 

  • Cherubini, F., Ungmeier, G., Wellisch, M., Willke, T., Skiadas, J., Van Ree, R., de Jong, E.: Towards a common classification approach for bio refinery systems. Biofuels Bioprod. Bioref. 3, 534–546 (2009)

    Article  Google Scholar 

  • Consonni, S., Katofsky, R., Larson, E.: A gasification-based bio-refinery for the pulp and paper industry. Chem. Eng. Res. Des. 87, 1293–1317 (2009)

    Article  Google Scholar 

  • Dahlquist, E.: An overview of thermal biomass conversion technologies. Chapter in book. Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation. CRC Press, Sustainable Energy Book Series, ISSN 2164–0645, vol. 4, pp. 1–4 (2013)

    Google Scholar 

  • Dahlquist, E., Jones, A.: Presentation of a dry black liquor gasification process with direct caustization. TAPPI J. 15–19 (2005)

    Google Scholar 

  • Dahlquist, E., Thorin, E., Yan, J.: Alternative pathways to a fossil-fuel free energy system in the Mälardalen region of Sweden. Int. J. Energy Res. Volume 31, Issue 12, 10 October 2007, Pages 1226–1236 (2007)

    Google Scholar 

  • Dalton, H., Stirling, D.L.: Co-metabolism. In: Quangle, J.R., Bull (eds.) Newdimensions in microbiology: mixed substrates, mixed cultures and microbial communities. Phil. Trans. R. Soc. Lond. B. 297:481–495 (1982)

    Google Scholar 

  • Dellomonaco, C., Rivera, C., Campbell, P., Gonzalez, R.: Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl. Environ. Microbiol. 76(15), 5067–5078 (2010)

    Article  Google Scholar 

  • Dererie, D.Y., Trobro, S., Momeni, M.H., Hansson, H., Blomqvist, J., Passoth, V., Schnurer, A., Sandgren, M., Stahlberg, J.: Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw. Bioresour. Technol. 102(6), 4449–4455 (2011)

    Article  Google Scholar 

  • Di Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2007)

    Google Scholar 

  • Erik, D., Campillo, J., Ghaviha, N., Zimmerman, N.: The potential for use of flow batteries for fully electric heavy vehicles. IEEE Special Session on Charging Technologies and Energy Storage Systems for Electric and Plug-in Hybrid Vehicles - ESARS2015. Aachen, Germany, 3–5 March 2015

    Google Scholar 

  • Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M., Kammen, D.M.: Ethanol can contribute to energy and environmental goals. Science. 311, 506–508 (2006)

    Article  Google Scholar 

  • Gaur, S. & Reed, T.B.: An atlas of thermal data for biomass and other fuels. NREL/TB-433-7965, UC Category: 1310, DE95009212, National Renewable Energy Laboratory, Golden (1995)

    Google Scholar 

  • Gaur, S., Reed, T.: Thermal data for natural and synthetic fuels. Marcel Dekker, NewYork (1998)

    Google Scholar 

  • Georgieva, T.I., Ahring, B.K.: Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl. Microbiol. Biotechnol. 77, 61–68 (2007)

    Article  Google Scholar 

  • Gressel, J., Zilberstein, A.: The forgotten waste tons for fuel or feed. In: Industrial Biotechnology and Biomass Utilization, Prospects and Challenges for the Developing World. Stockholm Environment Institute and United Nations Development Organization, Vienna (2007)

    Google Scholar 

  • Hakalehto, E., Pesola, J., Heitto, A., Deo, B.B., Rissanen, K., Sankilampi, U., Humppi, T., Paakkanen, H.: Fast detection of bacterial growth by using Portable Microbe Enrichment Unit (PMEU) and ChemPro100i((R)) gas sensor. Pathophysiology. 16, 57–62 (2009)

    Article  Google Scholar 

  • He, Q., Hemme, C.L., Jiang, H., He, Z., Zhou, J.: Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour. Technol. 102, 9586–9592 (2011)

    Article  Google Scholar 

  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F.: Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manag. 93, 223–228 (2011)

    Article  Google Scholar 

  • Kamm, B., Kamm, M.: Principles of biorefineries. Mini Review. Appl. Microbiol. Biotechnol. 64, 137–145 (2004)

    Article  Google Scholar 

  • Karimi, K., Emtiazi, G., Taherzadeh, M.J.: Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb. Technol. 40, 138–144 (2006)

    Article  Google Scholar 

  • Kirkels, A.F., Verbong, G.P.J.: Biomass gasification: still promising? A 30-year global overview. Renew. Sust. Energ. Rev. 15, 471–481 (2011)

    Article  Google Scholar 

  • Kleinert, M., Barth, T.: Towards a lignocellulasia biorefinery: direct one-step conversion of lignin to hydrogen-enriched bio-fuel. Energy Fuel. 22, 1371–1373 (2008)

    Article  Google Scholar 

  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A.: Nanocelluloses: a new family of nature based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011)

    Article  Google Scholar 

  • Kothari, R., Tyagi, V.V., Pathak, A.: Waste-to-energy: a way from renewable energy sources to sustainable development. Renew. Sust. Energy Rev. 14(9), 3164–3170 (2010)

    Article  Google Scholar 

  • Kreutz T.G., Larson, E., Liu, G.J., Williams, R.H.: Fischer-Tropf fuels from coal and biomass. 25th Annual International Pittsburgh Coal Conference Pittsburgh, 7 Oct 2008, revision. http://web.mit.edu/mitei/docs/reports/kreutz-fischer-tropsch.pdf (2008). Accessed Aug 2011

  • Kristiansen, T.: Experiences from biorefining operations. In: Control Systems, vol. 2010. Sweden, Stockholm (2010)

    Google Scholar 

  • Kukkonen, C.: Perennial grass as a dedicated energy crop. 11th International Conference on Clean Energy, 2–5 Nov 2011, Taichung, Taiwan. www.VIASPACE.com (2011). Accessed July 2011

  • Kumar, M., Gayen, K.: Developments in biobutanol production: new insights. Appl. Energy. 88, 1999–2012 (2011)

    Article  Google Scholar 

  • Kumar, A., Jones, D.D., Hanna, M.A.: Thermochemical biomass gasification: a review of the current status of the technology. Energies. 2, 556–581 (2009)

    Article  Google Scholar 

  • Larson, E., Consonni, S., Kreutz, T.: Preliminary economics of black liquor gasifier/gas turbine cogeneration at pulp and paper mills. J. Eng. Gas Turbines Power. 122(3), 255–261 (2000)

    Article  Google Scholar 

  • Lebo, S.E., Gargulak, J.D., McNally, T.J.: Lignin. John Wiley & Sons, Inc., NewYork (2000)

    Google Scholar 

  • Lestander, T.A., Rhén, C.: Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression. Analyst. 130(8), 1182–1189 (2003)

    Article  Google Scholar 

  • Li, H., Yan, J., Dahlquist, E.: Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Appl. Energy J. 104, 178–186 (2013.) (ISSN 0306-2619)(EISSN 1872-9118)

    Article  Google Scholar 

  • Li, H., Wang, W., Yan, J., Dahlquist, E.: Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Appl. Energy. 104, 178–186. doi:10.1016/j.apenergy.2012.11.010. Published: APR 2013

  • Lin, C.-W., Wub, C.-H., Tranc, D.-T., Shihd, M.-C., Lie, W.-H., Wuf, C.-F.: Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Process Biochem. 46, 489–493 (2011)

    Article  Google Scholar 

  • Lindmark, J., Thorin, E., Fdhila, R.B., Dahlquist, E.: Effects of mixing on the result of anaerobic digestion: Review. Renew. Sustain. Energy Rev. 40, 1030–1047 (2014) ISSN 1364-0321

    Google Scholar 

  • Loe, Ø., Høgmoen, H.: Vanillin from wood: a CO2-friendly and sustainable bio-material. Flavours Fragrances. 4, 30–31 (2011)

    Google Scholar 

  • Lönnqvist, T., Olsson, J., Espinosa, C., Birbuet, JC., Silveira, S., Dahlquist, E., Thorin, E., Persson, P-E., Lindblom, S., Khatiwada, D.: The potential for waste to biogas in La Paz and El Alto in Bolivia. 1st International Water Association Conference on HolisticSludge Management, Västerås Sweden (2013)

    Google Scholar 

  • Lucia, L.A., Argyropoulos, D.S., Adamopoulos, L., Gaspar, A.R.: Chemicals and energy from biomass. Can. J. Chem. 84, 960–970 (2006)

    Article  Google Scholar 

  • Luo, L., van der Voet, E., Huppes, G.: Biorefining of lignocellulosic feedstock – technical, economic and environmental considerations. Bioresour. Technol. 101, 5023–5032 (2010)

    Article  Google Scholar 

  • Malkow, T.: Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag. 24, 53–79 (2004)

    Article  Google Scholar 

  • Modahl Saur, I., Vold, B.I.: The LCA analysis of cellulose, ethanol, lignin and vanillin from Borregaard, Sarpsborg Østfoldforskning. http://ostfoldforskning.no/publikasjon/the-2010-lca-of-celluloseethanol-lignin-and-vanillin-from-borregaard-sarpsborg-658.aspx (2010). Accessed July 2012

  • Mosier, N., Wyman, C., Dale, B., Elander, R., Holtzapple, Y.Y.L.M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Article  Google Scholar 

  • Mtui, G.Y.S.: Recent advances in pretreatment of lignocellulosic waste and production of value added products. Afr. J. Biotechnol. 8(8), 1398–1415 (2009)

    Google Scholar 

  • Napoli, F., Olivieri, G., Russo, M.E., Marzocchella, A., Salatino, P.: Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J. Ind. Microbiol. Biotechnol. 37, 603–608 (2010)

    Article  Google Scholar 

  • Naqvi, M., Yan, J., Dahlquist, E.: Black liquor gasification integrated in pulp and paper mills: a critical review. Bioresour. Technol. 101, 8001–8015 (2010)

    Article  Google Scholar 

  • Naqvi, M., Yan, J., Dahlquist, E.: Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO2 capture. Bioresour. Technol. 110, 637–644 (2012a.) BITE-D-11-04184

    Article  Google Scholar 

  • Naqvi, M., Yan, J., Dahlquist, E.: Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO2 capture. Bioresour. Technol. 110, 637–644 (2012b)

    Article  Google Scholar 

  • Naqvi, M., Yan, J., Dahlquist, E.: Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black Liquor gasification and dry gasification using direct causticization. Appl. Energy. 90, 24–31 (2012c)

    Article  Google Scholar 

  • Naqvi, M., Dahlquist, E., Yan, J.: Complementing existing CHP plants using biomass for production of hydrogen and burning the residual gas in a CHP boiler. ISSN: 1759–7269 (Print) 1759–7277 (Online) Journal homepage: http://www.tandfonline.com/loi/tbfu20. J. Biofuel., Taylor and Francis, 27 Apr 2016

  • Nyström, J.: Rapid measurements of the moisture content in biofuel. PhD Thesis, No. 24, Mälardalen University, Sweden (2006)

    Google Scholar 

  • Nyström, J., Dahquist, E.: Methods for determination of moisture content in wood chips for power plants – a review. Fuel. 83, 773–779 (2004)

    Article  Google Scholar 

  • Nyström, J., Thorin, E., Backa, S., Dahlquist, E.: Filling level measurement in woodchips bins with radio frequency spectroscopy. Nordic Energy Research Program Biomass Combustion, Thermochemical Conversion of Biofuels, Norway, Trondheim, Nov 2002 (2003)

    Google Scholar 

  • Nystrom, J., Thorin, E., Backa, S., Dahlquist, E.: Moisture content measurements on sawdust with radio frequency spectroscopy. Proceedings of PWR 2005. ASME Power, 5–7 Apr 2005, Chicago (2005)

    Google Scholar 

  • Palonen, J., Anttikoski, T., Eriksson, T.: The Foster Wheeler gasification technology for biofuels: refusederived fuel (RDF) power generation. Power-Gen Europe, 30 May–1 June 2006, Kölnmesse, Cologne (2006)

    Google Scholar 

  • Pascual, E., Saúl, L.: Biomass Resources – Chrisgas Project. CEDER-CIEMAT, Spain (2008)

    Google Scholar 

  • Passoth, V., Eriksson, A., Sandgren, M., Ståhlberg, J., Piens, K., Schnürer, J.: Airtight storage of moist wheat grain improves bioethanol yields. Biotechnol. Biofuels. 2, 16 (2009)

    Article  Google Scholar 

  • Paz, A.M.: The dielectric properties of solid bofuels. PhD Thesis, No. 90, Mälardalen University, Sweden (2010)

    Google Scholar 

  • Paz, A., Thorin, E., Dahlquist, E.:A new method for bulk measurments of water content in woody biomass. Ecowood 2008, 3rd Conference on Environmental Compatible Forest Materials Proceedings, Portro (2008)

    Google Scholar 

  • Prasad, S., Singh, A., Joshi, H.C.: Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007)

    Article  Google Scholar 

  • Ptasinski, K.J.: Thermodynamic efficiency of biomass gasification and biofuels conversion. Biofuels Bioprod. Biorefin. 2, 239–253 (2008)

    Article  Google Scholar 

  • Qureshi, N., Saha, B.C., Hector, R.E., Dien, B., Hughes, S., Liu, S., Iten, L., Bowman, M.J., Sarath, G., Cotta, M.A.: Production of butanol (a biofuel) from agricultural residues: Part II – use of corn stover and switchgrass hydrolysates. Biomass Bioenergy. 34, 566–571 (2010)

    Article  Google Scholar 

  • Ren, Z., Ward, T.E., Regan, J.M.: Electricity production from cellulose in a microbial fuel cell using defined binary culture. Environ. Sci. Technol. 41, 4781–4786 (2007a)

    Article  Google Scholar 

  • Ren, N.O., et al.: also have studied how microorganisms could produce electricity as well in a kind of microbial fuel cell (2007b)

    Google Scholar 

  • Robbins, M.P., Evans, G., Valentine, J., Donnison, I.S., Allison, G.G.: Newopportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog. Energy Combust. Sci. 38(2), 138–155 (2012)

    Article  Google Scholar 

  • Rødsrud, G., Lersch, M., Sjöde, A.: History and future of world’s most advanced bio refinery in operation. Biomass Bioenergy. 46, 46–59 (2012)

    Article  Google Scholar 

  • Schmer, M.R., Vogel, K.P., Mitchell, R.B., Perrin, R.K.: Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. U. S. A. 105(2), 464–469 (2008)

    Article  Google Scholar 

  • Siró, I., Plackett, D.: Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 17, 459–494 (2010)

    Article  Google Scholar 

  • Tao, G.C., Lestander, T.A., Geladi, P., Xiong, S.J.: Biomass properties in association with plant species and assortments I: a synthesis based on literature data of energy properties. Renew. Sust. Energ. Rev. 16(5), 3481–3506 (2012)

    Article  Google Scholar 

  • Tao, J., Lu, Q., Dong, C., Du, X., Dahlquist, E.: Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas. Energy Convers. Manag. 100, 56–63 (2015a)

    Article  Google Scholar 

  • Tao, J., Dong, C., Lu, Q., Liao, H., Du, X., Yang, Y., Dahlquist, E.: Catalytic cracking of biomass high-temperature pyrolysis tar using NiO/AC catalysts. Int. J. Green Energy. 12(8), 773–779 (2015b)

    Article  Google Scholar 

  • Thorin, E., Lindmark, J., Nordlander, E., Odlare, M., Dahlquist, E., Kastensson, J., Leksell, N., Pettersson, C-M.: Performance optimization of the växtkraft biogas production plant. Third International Conference on Applied Energy – 16–18 May 2011 – Perugia. Applied Energy. 97: 503–508. URL: http://dx.doi.org/10.1016/j.apenergy.2012.03.007 (2011a)

  • Thorin, E., Daianova, L., Lindmark, J., Nordlander, E., Song, H., Jääskeläinen, A., Malo, L., den Boer, E., den Boer, J., Szpadt, R., Belous, O., Kaus, T., Käger, M.: State of the art in the waste to energy area – technology and systems. REMOWE Report No. O4.1.1. http://www.remowe.eu (2011b). Accessed July 2012

  • Thorin, E., Lindmark, J., Nordlander, E., Odlare, M., Dahlquist, E., Kastensson, J., Leksell, N., Pettersson, C.-M.: Performance optimization of the växtkraft biogas production plant. Appl. Energy. 97, 503–508 (2012.) (ISSN 0306-2619) (EISSN 1872-9118)

    Article  Google Scholar 

  • Tucker, M.P., Kim, K.H., Newman, M.M., Nguyen, Q.A.: Effects of temperature and moisture on diluteacid steam explosion pretreatment of corn stover and cellulase enzyme digestibility. Appl. Biochem. Biotechnol. 105, 165–178 (2003)

    Article  Google Scholar 

  • van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 35(9), 3748–3762 (2011)

    Google Scholar 

  • Vlysidis, A., Binns, M., Webb, C., Theodoropoulos, C.: A techno-economic analysis of biodiesel biorefineries: assessment of integrated designs for the co-production of fuels and chemicals. Energy. 36, 4671–4683 (2011)

    Article  Google Scholar 

  • Walker, J.: Basic wood chemistry and cell wall ultrastructure. In: Walker, J. (ed.) Primary wood processing – principles and practice. Springer, Dordrecht (2006)

    Google Scholar 

  • Wang, L., Chen, H.: Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem. 46(2), 604–607 (2011)

    Article  Google Scholar 

  • Wang, W., Hu, Y., Yan, J., Nyström, J., Dahlquist, E.: Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system. Front. Energy Power Eng. China. 4(4), 469–474 (2010)

    Article  Google Scholar 

  • Xu, L., Tschirner, U.: Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour. Technol. 102, 10,065–10,071 (2011)

    Article  Google Scholar 

  • Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 45, 651–671 (2003)

    Article  Google Scholar 

  • Yan, J., Dahlquist, E., Jin, H., Gao, L., Tu, S.: Integration of large scale pulp and paper mills with CO2 Mitigation Technologies. The 3rd International Green Energy Conference, Västerås, Sweden. pp. 159–165 (2007)

    Google Scholar 

  • Yan, J., Raza Naqvi, M., Dahlquist, E: Bioenergy polygeneration, carbon capture and storage related to the pulp and paper industry and power plants. In: Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation. Sustainable energy book series, ISSN 2164–0645; 4. P 163–176. ISBN 978–0–415-62088-8 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Dahlquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dahlquist, E. (2017). Energy, Different Forms. In: Dahlquist, E., Hellstrand, S. (eds) Natural Resources Available Today and in the Future. Springer, Cham. https://doi.org/10.1007/978-3-319-54263-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54263-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54261-4

  • Online ISBN: 978-3-319-54263-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics