Advertisement

Interval Observers for SIR Epidemic Models Subject to Uncertain Seasonality

  • Pierre-Alexandre BlimanEmail author
  • Bettina D’Avila Barros
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 471)

Abstract

Epidemic models describe the establishment and spread of infectious diseases. Among them, the SIR model is one of the simplest, involving exchanges between three compartments in the population, that represent respectively the number of susceptible, infective and recovered individuals. The issue of state estimation is considered here for such a model, subject to seasonal variations and uncertainties in the transmission rate. Assuming continuous measurement of the number of new infectives per unit time, a class of interval observers with estimate-dependent gain is constructed and analyzed, providing lower and upper bounds for each state variable at each moment in time. The dynamical systems that describe the evolution of the errors are monotonous. Asymptotic stability is ensured by appropriate choice of the gain components as a function of the state estimate, through the use of a common linear Lyapunov function. Numerical experiments are presented to illustrate the method.

Keywords

Interval observer Uncertain systems Monotone systems Linear Lyapunov functions SIR model Mathematical epidemiology 

References

  1. 1.
    Berman, A., Plemmons, R.J.: Nonnegative matrices in themathematical sciences. Classics in Applied Mathematics, vol. 9 (1979)Google Scholar
  2. 2.
    Bernard, O., Gouzé, J.-L.: Closed loop observers bundle for uncertain biotechnological models. J. Process Control 14(7), 765–774 (2004)CrossRefGoogle Scholar
  3. 3.
    Bichara, D., Cozic, N., Iggidr, A.: On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Math. Biosci. Eng. (MBE) 11(4), 741–759 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Capasso, V.: Mathematical Structures of Epidemic Systems, vol. 88. Springer (1993)Google Scholar
  5. 5.
    Diaby, M., Iggidr, A., Sy, M.: Observer design for a schistosomiasis model. Math. Biosci. 269, 17–29 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dietz, K: The incidence of infectious diseases under the influence of seasonal fluctuations. In: Mathematical Models in Medicine, pp. 1–15. Springer (1976)Google Scholar
  7. 7.
    Efimov, D., Raïssi, T., Chebotarev, S., Zolghadri, A.: Interval state observer for nonlinear time varying systems. Automatica 49(1), 200–205 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gouzé, J.-L., Rapaport, A.: Interval observers for uncertain biological systems. Ecol. Modell. 133(1), 45–56 (2000)CrossRefGoogle Scholar
  9. 9.
    Hirsch, M.W.: Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math 383, 1–53 (1988)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)Google Scholar
  11. 11.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008)Google Scholar
  12. 12.
    Kuznetsov, YuA, Piccardi, C.: Bifurcation analysis of periodic SEIR and SIR epidemic models. J. Math. Biol. 32(2), 109–121 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mason, O., Shorten, R.: Quadratic and copositive Lyapunov functions and the stability of positive switched linear systems (2007)Google Scholar
  14. 14.
    Meslem, N., Ramdani, N., Candau, Y.: Interval observers for uncertain nonlinear systems. Application to bioreactors. In: 17th IFAC World Congress, Seoul, Korea, pp. 9667–9672 (2008)Google Scholar
  15. 15.
    Smith, H.L.: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, vol. 41. Mathematical Surveys and Monographs. American Mathematical Society (1995)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pierre-Alexandre Bliman
    • 1
    • 2
    Email author
  • Bettina D’Avila Barros
    • 1
  1. 1.Escola de Matemática AplicadaFundação Getulio VargasRio de Janeiro - RJBrazil
  2. 2.Lab. J.-L. Lions UMR CNRS 7598Sorbonne Universités, Inria, UPMC Univ Paris 06ParisFrance

Personalised recommendations