POSTA 2016: Positive Systems pp 201-211

# Positivity Analysis of Continuous 2D Fornasini-Marchesini Fractional Model

• Krzysztof Rogowski
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 471)

## Abstract

In the chapter continuous Fornasini-Marchesini type model containing partial fractional-order derivatives described by the Caputo definition will be considered. General solution formula to the state-space equations of the model will be given. Using this solution formula the positivity of such system will be analyzed and the conditions under which the system is internally positive will be derived. Considerations will be illustrated by numerical simulations.

## Keywords

Fractional-order systems Two-dimensional systems General solution formula Positive systems

## Notes

### Acknowledgements

This work was supported by National Science Centre in Poland under work No. 2014/13/B/ST7/03467.

## References

1. 1.
Bose, N.K.: Multidimensional Systems Theory and Applications. Springer (1995)Google Scholar
2. 2.
Debnath, J., Dahiya, R.S.: Theorems on multidimensional Laplace transform for solution of boundary value problems. Comput. Math. Appl. 18(12), 1033–1056 (1989)
3. 3.
Fornasini, E., Marchesini, G.: Double indexed dynamical systems. Math. Syst. Theory 12(1), 59–72 (1978)
4. 4.
Fornasini, E., Marchesini, G.: State-space realization theory of two-dimensional filters. IEEE Trans. Autom. Control 21(4), 484–491 (1976)
5. 5.
Galkowski, K.: State-Space Realizations of Linear 2-D Systems with Extensions to the General nD ($$n>2$$) case. Springer, London (2001)
6. 6.
Idczak, D., Kamocki, R., Majewski, M.: Fractional continuous Roesser model with Riemann-Liouville derivative. In: Proceedings of 8th International Workshop on Multidimensional Systems (nDS’13), Sept 9–11, Erlangen, Germany, pp. 33–38 (2013)Google Scholar
7. 7.
Idczak, D., Kamocki, R., Majewski, M.: On a fractional continuous counterpart of Fornasini-Marchesini model. In: Proceedings of 8th International Workshop on Multidimensional Systems (nDS’13), Sept 9–11, Erlangen, Germany, pp. 45–49 (2013)Google Scholar
8. 8.
Kaczorek, T.: Selected Problems in Fractional Systems Theory. Springer, London (2011)
9. 9.
Kaczorek, T.: Fractional 2D linear systems. J. Autom. Mob. Robotics Intell. Syst. 2(2), 5–9 (2008)Google Scholar
10. 10.
Kaczorek, T.: Positive 1D and 2D Systems. Springer, London (2001)
11. 11.
Kaczorek, T.: Two-Dimensional Linear Systems. Springer, London (1985)
12. 12.
Kaczorek, T., Rogowski, K.: Fractional linear systems and electrical circuits. Stud. Syst. Decis. Control 13 (2015) (Springer)Google Scholar
13. 13.
Kurek, J.E.: The general state-space model for a two-dimensional linear digital system. IEEE Trans. Autom. Control 30(2), 600–602 (1985)
14. 14.
Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)
15. 15.
Roesser, R.P.: A discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20(1), 1–10 (1975)
16. 16.
Rogowski, K.: General response formula for fractional 2D continuous-time linear systems described by the Roesser model. Acta Mech. et Autom. 5(2), 112–116 (2011)Google Scholar
17. 17.
Rogowski, K.: Selected problems of theory of 2D noninteger order systems described by the Roesser model. Ph.D. thesis, Bialystok University of Technology (in Polish), Bialystok (2011)Google Scholar