Skip to main content

Effect of Hole Stemming Practices on Energy Efficiency of Comminution

  • Chapter
  • First Online:
Energy Efficiency in the Minerals Industry

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In order to increase the efficiency of explosive comminution, the borehole pressure must be maximized and pressure losses minimized. The majority of these pressure losses occur from premature borehole venting and through weak layers intersecting the borehole. With the use of proper stemming material and amount of stemming these pressure losses can be minimized, increasing the efficiency of explosive comminution. This chapter discusses the key considerations in the choice of stemming materials and methods calculate proper stemming size for different borehole sizes. In addition, the pressure models and methods to calculate stemming depth are discussed for both ideal and nonideal stemming material. Following the stemming design section, the chapter presents methods to improve stemming efficiency and reduce total stemming height including airdecks and stemming plugs. The chapter then addresses the issue of minimal fragmentation in the stemming zone. Practical design guidelines are presented for the use of a stem charge, allowing for breakage in the stemming zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konya C, Walter E (1990) Surface blast design. Englewood Cliffs, New Jersey

    Google Scholar 

  2. Konya C (2015) Rock blasting and overbreak control. Intercontinental Development Inc. Montville, Ohio

    Google Scholar 

  3. Snelling W, Hall C (1912) The effects of Stemming on the efficiency of explosives. Washington D.C

    Google Scholar 

  4. Matthews D (1978) Personnal Communication

    Google Scholar 

  5. Sharma S, Rai P (2015) Investigation of crushed aggregate as stemming material in bench blasting: a case study. Geotech Geo Eng 1449–1463

    Google Scholar 

  6. Kojovic T (2005) Influence of aggregate stemming in blasting on the sag mill performance. Miner Eng: 1398–1404

    Google Scholar 

  7. Cevizci H, Ozkahraman H (2012) The effect of blast hole stemming length to rockpile fragmentation at limestone quarries. Int J Rock Mech Min Sci

    Google Scholar 

  8. Konya C, Otounye F, Skidmore D (1982) Airblast reduction from effective blasthole stemming. In: Proceedings of eighth conference on explosives and blasting technique, pp 145–156

    Google Scholar 

  9. Konya C (1968) Spacing of explosive charges. Dissertation, University of Missouri, Rolla

    Google Scholar 

  10. Konya C, Davis J (1978) The effects of stemming consist on retention in blastholes. In: Proceedings of the fourth conference on explosives and blasting technique, pp 102–112

    Google Scholar 

  11. Davis G (1977) The effects of stemming consist on retention in blastholes. Dissertation, University of West Virginia

    Google Scholar 

  12. Cevizci H (2013) A new stemming application for Blasting. A case study. Mineracao Min 513–519

    Google Scholar 

  13. Eloranta J (1994) Stemming selection for large-diameter blastholes. In: Conference on explosives and blasting technique, pp 255–266

    Google Scholar 

  14. Cevizci H (2012) A newly developed plaster stemming method for blasting. J South Afr inst Min Metall 1071–1078

    Google Scholar 

  15. Otuonye F, Konya C, Skidmore D (1983) Effects of stemming size distribution on explosive charge confinement: a laboratory study. Min Eng 1205–1208

    Google Scholar 

  16. Dobrilovic M, Ester Z, Jankovic B (2005) Measurement in blast hole stem and influence of stemming materials on blasting quality. Rudarsko-geolosko-naftni Zbornik 47–53

    Google Scholar 

  17. Boshoff D, Webber-Youngman R (2011) Testing stemming performance, possible or not? J South Afr Inst Min Metall 871–874

    Google Scholar 

  18. Otuonye F (1981) Effective blasthole stemming. Dissertation, The Ohio State University

    Google Scholar 

  19. Qinan W (1912) High explosives. London, United Kingdom

    Google Scholar 

  20. Cooper P (1996) Explosive engineering. New York

    Google Scholar 

  21. Cook M (1947) An Equation of State for Gases at Extremely High Pressures and Temperatures from the Hydrodynamic Theory of Detonation. Journal of Chemical Physics: 518-524

    Google Scholar 

  22. Cook M (1974) The Science of Industrial Explosives. Albequerque, New Mexico

    Google Scholar 

  23. Johansson C, Persson P (1970) Detonics of High Explosives. New York, New York

    Google Scholar 

  24. Konya A, Konya C (2017) Precision presplitting—explosive load variations with spacing. In: Proceedings of the international society of explosive engineers, pp 553–562

    Google Scholar 

  25. Kutter H, Fairhust C (1971) On the fracture process in blasting. Int J Rock Mech Min Sci 181–202

    Google Scholar 

  26. Worsey P (1981) Geotechnical factors affecting the application of pre-split blasting to rock slopes. Dissertation, University of Newcastle upon Tyne

    Google Scholar 

  27. Johnsson G, Hofmeister W (1960) The influence of stemming on the efficiency of blasting using 36MM-shot-holes. In: International symposium on mining research, pp 91–102

    Google Scholar 

  28. Worsey P (1990) Experimental data indicating a direct link between the rate of stemming ejection and the degree of rock face movement in bench blasting. In: Proceedings of the conference on explosive and blasting procedure, pp 83–95

    Google Scholar 

  29. Perry R, Green D (2007) Perry’s chemical engineers’ handbook. China

    Google Scholar 

  30. Cook M (1971) The science of high explosives. Huntington

    Google Scholar 

  31. Furnas C (1929) Flow of gases through beds of broken solids. Washington D.C

    Google Scholar 

  32. Foldesi J (1974) Nyujtott Toltetekkel Torteno Kozetjovesztes Robbantastechnika Parametereinek Neghatarozasa Kulfejtesben. Doktori Ertekezes Miskolc

    Google Scholar 

  33. Outuonye F (1978) Modeling the behavior of blasthole stemming. Dissertation, University of West Virginia

    Google Scholar 

  34. Langfors U, Kihlstrom B (1973) The modern technique of rock blasting. New York, New York

    Google Scholar 

  35. Knopp J (2000) Stemming ejection and burden movements of small borehole blasts. In: Proceedings of the conference on explosives and blasting technique, pp 1–10

    Google Scholar 

  36. Sazid M, Saharan M, Singh T (2012) Effective explosive energy utilization for engineering blasting—initial results of an inventive stemming plug. Harmonising Rock Engineering and the Environment, pp 1265–1268

    Google Scholar 

  37. Jenkins S, Floyd J (2000) Stemming enhancement tests. In: Proceedings of the conference on explosive and blasting technique, pp 191–204

    Google Scholar 

  38. Worsey P (1990) Stemming ejection comparison of conventional stemming and stemming incorporating blast control plugs for increasing explosion energy use. Frablast 1990:361–367

    Google Scholar 

  39. Carr B (2000) New stem plug devices and applications. Stemtite LLC BAI workshop

    Google Scholar 

  40. Correa C, Navarrete M (2004) Assessment of stemming plug plastic elements to improve blasting gases confinement in escondida. Explo 2004:95–100

    Google Scholar 

  41. Choudhary B, Rai P (2013) Stemming plug and its effect on fragmentation and Muckpile shape parameters. Int J Min Mineral Eng 296–311

    Google Scholar 

  42. Varistem (2004) Vari-stem blasthole plugs improve blasting patterns. Min Eng 31

    Google Scholar 

  43. Jhanwar J, Jethwa J, Reddy A (2000) Influence of air-deck blasting on fragmentation in jointed rocks in an open-pit manganese mine. Eng Geol 13–29

    Google Scholar 

  44. Sazid M, Saharan M, Singh T (2016) Enhancement of the explosive energy utilization with the application of new stemming contrivance. Int J Innovative Sci Mod Eng 1–5

    Google Scholar 

  45. Wilkins M, Worsey P (1998) Stemming Technique for loading Angled Hoels charged with ANFO. In: Proceedings of the conference on explosive and blasting technique, pp 159–169

    Google Scholar 

  46. Konya A, Konya C (2016) Stemming charge. Acad Blasting Explos Technol

    Google Scholar 

  47. Konya C, Walter E (1988) Blasthole timing controls vibration, air blast, and flyrock. Coal Min

    Google Scholar 

  48. Konya C (1987) Accurate blasthole timing reduces blasting cost. Mine Quarry

    Google Scholar 

  49. Rodgers J, Lee R, Whitaker K (2003) The origins and effects of inter-deck pressure in decked blasts. In: Proceedings of the conference on explosive and blasting technique

    Google Scholar 

  50. Akhaven J (2011) The chemistry of explosives. Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calvin J. Konya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konya, C.J., Konya, A. (2018). Effect of Hole Stemming Practices on Energy Efficiency of Comminution. In: Awuah-Offei, K. (eds) Energy Efficiency in the Minerals Industry. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-54199-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54199-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54198-3

  • Online ISBN: 978-3-319-54199-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics