Skip to main content

Energy Efficiency of Electrowinning

  • Chapter
  • First Online:
Energy Efficiency in the Minerals Industry

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The winning of high purity metal from aqueous solutions through electrodeposition is the final processing recovery step for many nonferrous metals. Direct electrical current/voltage provides the necessary driving force to promote the necessary reactions at an industrially relevant rate. Energy, especially electrical, is often the highest cost for electrowinning operations. Therefore, energy efficiency is a paramount concern for modern facilities. This chapter discusses electrical energy consumption in aqueous electrowinning with a specific focus on cell voltage and current efficiency. It also presents potential improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Free M, Moats M (2013) Hydrometallurgical production. In: Seetharaman S (ed) Treatise on process metallurgy volume 3: industrial processes part A. Elsevier, Oxford, pp 949–982

    Google Scholar 

  2. Schlesinger ME, King MJ, Sole KC et al (2011) Extractive metallurgy of copper, 5th edn. Elsevier, Oxford

    Google Scholar 

  3. Moats M, Guerra E, Gonzalez JA (2008) Zinc electrowinning—operating data. In: Centomo L, Collins M, Harlamovs J et al (eds) Zinc and lead metallurgy. CIM, Montreal, pp 307–314

    Google Scholar 

  4. Robinson TG, Sole KC, Sandoval S et al (2013) Copper electrowinning: 2013 world tankhouse operating data. In: Abel R, Delgado C (eds) Proceedings of copper 2013. vol V, pp 3–14

    Google Scholar 

  5. Marsden JO (2008) Energy efficiency and copper hydrometallurgy. In: Young C, Taylor P, Anderson C et al (eds) Hydrometallurgy 2008 proceedings of the sixth international symposium. SME, Littleton, pp 29–42

    Google Scholar 

  6. Moats M, Guerra E, Siegmund A et al (2010) Primary zinc smelter operating data survey. In: Pb Zn 2010—lead-zinc 2010 symposium, held in conjunction with COM 2010, CIM, Montreal, pp 263–282

    Google Scholar 

  7. Ettel VA (1977) Energy requirements in electrolytic winning and refining of metals. CIM Bull 70(782):179–187

    Google Scholar 

  8. Free ML (2013) Hydrometallurgy: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  9. Pavlov D, Rogachev T (1986) Mechanism of the action of Ag and As on the anodic corrosion of lead and oxygen evolution at the Pb/PbO(2 − x)/H2O/O2/H2SO4 electrode system. Electrochim Acta 31(2):241–249

    Article  Google Scholar 

  10. Nikoloski AN, Nicol MJ (2007) Effect of cobalt ions on the performance of lead anodes used for the electrowinning of copper—a literature review. Min Process Extr Metall Rev 29(2):143–172

    Article  Google Scholar 

  11. Abbey CE, Moats MS (2017) Effect of cobalt and iron concentration on the potential for oxygen evolution from Pb-Ca-Sn anodes in synthetic copper electrowinning electrolytes. In: Wang S, Free ML, Alam S et al (eds) Applications of process engineering principles in materials processing, energy and environmental technologies. Springer, Berlin, pp 89–95

    Chapter  Google Scholar 

  12. Moats MS (2008) Will lead-based anodes ever be replaced in aqueous electrowinning? JOM 60(10):46–49

    Article  Google Scholar 

  13. Sandoval S, Clayton C, Dominguez S et al (2010) Development and commercialization of an alternative anode for copper electrowinning. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1635–1648

    Google Scholar 

  14. Brown AP, Loutfy RO, Cook GM (1980) The electrorefining of copper from a cuprous ion complexing electrolyte: II. Experimental comparison of possible alternative electrolytes and preliminary cost engineering analysis. ANL/OEPM-80-2

    Google Scholar 

  15. Kerby RC (1984) Application of polarization measurements to the control of zinc electrolyte quality for electrowinning. In: Warren IH (ed) Application of polarization measurements in the control of metal deposition. Elsevier, Amsterdam, pp 84–132

    Google Scholar 

  16. Adcock PA, Adeloju SB, Newman OM (2002) Measurement of polarization parameters impacting on electrodeposit morphology I: theory and development of technique. J Appl Electrochem 32(10):1101–1107

    Article  Google Scholar 

  17. Stantke P (1999) Guar concentration measurement with the CollaMat system. In: Dutrizac JE, Li J, Ramachandran V (eds) Electrorefining and electrowinning of copper: proceedings of the Copper 99—Cobre 99 international conference, vol III, TMS, Warrendale, pp 643–651

    Google Scholar 

  18. Luyima A, Moats MS, Cui W, Heckman C (2016) Examination of copper electrowinning smoothing agents. Part II: fundamental electrochemical examination of DXG-F7. Miner Metall Process 33(1):14–22

    Google Scholar 

  19. Biswas AK, Davenport WG (1980) Extractive metallurgy of copper, 2nd edn. Pergammon Press, Oxford

    Google Scholar 

  20. Guerra E, Bestetti M (2006) Physicochemical properties of ZnSO4-H2SO4-H2O electrolytes of relevance to zinc electrowinning. J Chem Eng Data 51(5):1491–1497

    Article  Google Scholar 

  21. Boon C, Fraser R, Johnston T, Robinson D (2013) Comparison of intercell contact bars for electrowinning plants. In: Battle T, Moats M, Cocalia V (eds) Ni-Co 2013. Wiley, Hoboken, pp 177–189

    Google Scholar 

  22. Ashford B, Ebert WA, Vega FDM et al (2011) Double contact bar insulator assembly for electrowinning of a metal and methods of use thereof. U.S. Patent 7,993,501, 9 Aug 2011

    Google Scholar 

  23. Wiechmann EP, Morales AS, Aqueveque P et al (2015) On the design robustness and long term performance of the most used electrodes in the copper electrowining industry. In: Industry applications society annual meeting, 2015 IEEE, pp 1–8

    Google Scholar 

  24. Mackinnon DJ, Brannen JM, Fenn PL (1987) Characterization of impurity effects in zinc electrowinning from industrial acid sulphate electrolyte. J Appl Electrochem 17:1129–1143

    Article  Google Scholar 

  25. Ault R, Frazer EJ (1988) Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions. J Appl Electrochem 18:583–589

    Article  Google Scholar 

  26. Robinson DJ, O’Keefe TJ (1976) On the effects of antimony and glue on zinc electrocrystallization behavior. J Appl Electrochem 6:1–7

    Article  Google Scholar 

  27. Parada TF, Asselin E (2009) Reducing power consumption in zinc electrowinning. JOM 61:54–58

    Article  Google Scholar 

  28. Anderson TN, Wright CN, Richards KJ (1973) Important electro-chemical aspects of electrowinning copper from acid leach solutions. In: Evans DJI, Shoemaker RS (eds) International symposium on hydrometallurgy, New York, pp 171–202

    Google Scholar 

  29. Grunenfelder JG (1960) The hydrometallurgy of copper. In: Butts A (ed) Copper: the science and technology of the metal, its alloys and compounds. ACS, Reinhold, pp 300–337

    Google Scholar 

  30. Mantell CL (1960) Electrochemical engineering. McGraw-Hills, New York, p 198

    Google Scholar 

  31. Khouraibchia Y, Moats M (2009) Effective diffusivity of ferric ions and current efficiency in stagnant synthetic copper electrowinning solutions. Miner Metall Process 26:176–190

    Google Scholar 

  32. Khouraibchia Y, Moats M (2010) Evaluation of copper electrowinning parameters on current efficiency and energy consumption using surface response methodology. In: Doyle FM, Woods R, Kesall GH (eds) Electrochemistry in mineral and metal processing VIII: ESC Trans, vol 28 No. 6, pp 295–306

    Google Scholar 

  33. Miller G (2011) Methods of managing manganese effects on copper solvent extraction plant operations. Solvent Extr Ion Exch 29(5–6):837–853

    Article  Google Scholar 

  34. Joy S, Staley A, Moats M et al (2010) Understanding and improvement of electrowinning current efficiency at Freeport-McMoRan Bagdad. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1379–1392

    Google Scholar 

  35. El-Nagar GA, Mohammad AM, El-Deab MS et al (2013) Electrocatalysis by design: enhanced electrooxidation of formic acid at platinum nanoparticles–nickel oxide nanoparticles binary catalysts. Electrochim Acta 94:62–71

    Article  Google Scholar 

  36. Tang Y, Chen Y, Zhou P et al (2010) Electro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acid. J Solid State Electrochem 14(11):2077–2082

    Article  Google Scholar 

  37. Gulla AF, Krasovic J (2012) Gas-diffusion electrode. US Patent Application 14/342,887, 14 Aug 2014

    Google Scholar 

  38. Izawa Y, Ogata S, Uno M et al (2015) Oxygen gas diffusion cathode, electrolytic cell employing same, method of producing chlorine gas and method of producing sodium hydroxide. US Patent 9,1754,10, 3 Nov 2015

    Google Scholar 

  39. Mishra K, Cooper WC (1984) Electrochemical aspects of the direct electrowinning copper from sulfuric acid leach solutions in the presence of iron using gas sparging. In: Robinson D, James SE (eds) Anodes for electrowinning. TMS-AIME, Warrendale, pp 13–36

    Google Scholar 

  40. Cooke AV, Chilton JP, Fray DJ (1985) Ferrous/ferric depolarization in copper electrowinning: mass transport and current efficiency considerations. In: Bautista RG, Wesely RJ (eds) Energy reduction techniques in metal electrochemical processes. TMS, Warrendale, pp 111–141

    Google Scholar 

  41. Panda B, Das SC (2001) Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid. Hydrometallurgy 59(1):55–67

    Article  Google Scholar 

  42. Subbaiah T, Singh P, Hefter G et al (2000) Sulphurous acid as anodic depolarizer in copper electrowinning part II. J Appl Electrochem 30(2):181–186

    Article  Google Scholar 

  43. Robinson DJ (1984) SO2 electrowinning in copper hydrometallurgy for energy conservation. JOM 36(1):43–47

    Article  Google Scholar 

  44. Dawson JN, Singh P, Hefter G (1999) The effects of sulfur dioxide on the energy consumption and nature of electrowon copper. Paper presented at PACRIM ‘99 Congress, Bali, Indonesia, 10–13 Oct 1999

    Google Scholar 

  45. Sandoval SP, Lei KPV (1993) Evaluation of the ferrous/ferric-sulfur dioxide anode reaction for integration into the copper leaching-solvent extraction-electrowinning circuit. In: Hiskey JB, Warren GW (eds) Proceedings of Milton E. Wadsworth (IV) International symposium on hydrometallurgy, Salt Lake City, UT pp 1091–1105

    Google Scholar 

  46. Dolinar WJ, Sandoval SP (1995) Copper electrowinning in the absence of acid misting using the ferrous/ferric-sulfur dioxide anode reaction—a pilot study. Trans Soc Min Metall Explor 298:1936–1942

    Google Scholar 

  47. Sandoval SP, Cook PR, Hoffman, WP et al (2008) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction and a flow-through anode. US Patent 7,368,049, 6 May 2008

    Google Scholar 

  48. Sandoval SP, Robinson TG, Cook PR (2008) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction. US Patent 7,378,011, 27 May 2008

    Google Scholar 

  49. Sandoval S, Cook P, Morales C et al (2010) Demonstration of the ferrous/ferric anode reaction for copper electrowinning. In: Copper 2010 proceedings, vol 4, GDMB, Clausthal-Zellerfeld, pp 1617–1634

    Google Scholar 

  50. Edmiston KJ (1983) An update on chloride hydrometallurgical processes for sulfide concentrates. SME pre-print 84–114, SME, Littleton, CO

    Google Scholar 

  51. Rodchanarowan A, Sarswat PK, Bhide R, Free ML (2014) Production of copper from minerals through controlled and sustainable electrochemistry. Electrochim Acta 140:447–456

    Article  Google Scholar 

  52. Muir D, Senanayake G (1984) Refining of clear copper powders by the Parker process: a comparison of the chemistry of copper impurities in chloride and sulfate media. In: Extractive metallurgy symposium, vol 36, 12–14 Nov 1984, Melbourne, Australia, pp 353–359

    Google Scholar 

  53. Crundwell F, Moats M, Ramachandran V et al (2011) Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, Oxford

    Google Scholar 

  54. Morimitsu M, Oshiumi N (2009) Accelerated oxygen evolution and suppressed MnOOH deposition on amorphous IrO2-Ta2O5 coatings. Chem Lett 38(8):822–823

    Article  Google Scholar 

  55. Morimitsu M, Oshiumi N, Yamaguchi T (2010) Amorphous oxide coated anode for energy saving of zinc electrowinning. In: Pb Zn 2010—lead-Zinc 2010 symposium, held in conjunction with COM 2010, CIM, Montreal, pp 813–818

    Google Scholar 

  56. Sandoval S, Garcia R, Neff T et al (2013) Operation of alternative anodes at Chino SXEW. In: Abel R, Delgado C (eds) Proceedings of copper 2013, vol V, pp 145–152

    Google Scholar 

  57. Fiorucci A, Calderara A, Iacopetti L et al (2013) The De Nora solution–part I, DSA® anodes for copper electrowinning. In: Abel R, Delgado C (eds) Proceedings of copper 2013, vol V, pp 107–118

    Google Scholar 

  58. Morimitsu M, Yamaguchi T, Oshiumi N, et al (2011) Energy-efficient electrowinning process with smart anode comprising nanooxide catalyst. In: Proceedings of European metallurgical conference, vol 3, pp 975–984

    Google Scholar 

  59. Morimitsu M (2012) Performance and commercialization of the smart anode, MSA™, for environmentally friendly electrometallurgical process. In: Free M, Moats M, Houlachi G et al (eds) Electrometallurgy 2012. Wiley, New York, pp 49–54

    Chapter  Google Scholar 

  60. Zhang T, Morimitsu M (2012) A novel oxygen evolution anode for electrowinning of non-ferrous metals. In: Free M, Moats M, Houlachi G et al (eds) Electrometallurgy 2012. Wiley, New York, pp 29–34

    Chapter  Google Scholar 

  61. Moats MS (2010) MnO2 deposition on coated titanium anodes in copper electrowinning solutions. ERZMETALL 63(6):286–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Moats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moats, M.S. (2018). Energy Efficiency of Electrowinning. In: Awuah-Offei, K. (eds) Energy Efficiency in the Minerals Industry. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-54199-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54199-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54198-3

  • Online ISBN: 978-3-319-54199-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics