Skip to main content

Spectral Reflectance Recovery with Interreflection Using a Hyperspectral Image

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

Abstract

The capture of scene spectral reflectance (SR) provides a wealth of information about the material properties of objects, and has proven useful for applications including classification, synthetic relighting, medical imaging, and more. Thus many methods for SR capture have been proposed. While effective, past methods do not consider the effects of indirectly bounced light from within the scene, and the estimated SR from traditional techniques is largely affected by interreflection. For example, different lighting directions can cause different SR estimates. On the other hand, past work has shown that accurate interreflection separation in hyperspectral images is possible but the SR of all surface points needs to be known a priori. Thus we see that the estimation of SR and interreflection in its current form constitutes a chicken and egg dilemma. In this work, we propose the challenging and novel problem of simultaneously performing SR recovery and interreflection removal from a single hyperspectral image, and develop the first strategy to address it. Specifically, we model this problem using a compact sparsity regularized nonnegative matrix factorization (NMF) formulation, and introduce a scalable optimization algorithm on the basis of the alternating direction method of multipliers (ADMM). Our experiments have demonstrated its effectiveness on scenes with a single or two reflectance colors, containing possibly concave surfaces that lead to interreflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balas, C., Papadakis, V., Papadakis, N., Papadakis, A., Vazgiouraki, E., Themelis, G.: A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value. J. Cult. Herit. 4, 330–337 (2003)

    Article  Google Scholar 

  2. Maloney, L.T., Wandell, B.A.: Color constancy: a method for recovering surface spectral reflectance. JOSA A 3, 29–33 (1986)

    Article  Google Scholar 

  3. Gao, L., Kester, R.T., Tkaczyk, T.S.: Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy. OpEx 17, 12293–12308 (2009)

    Google Scholar 

  4. Gao, L., Kester, R.T., Hagen, N., Tkaczyk, T.S.: Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy. OpEx 18, 14330–14344 (2010)

    Google Scholar 

  5. Gorman, A., Fletcher-Holmes, D.W., Harvey, A.R.: Generalization of the lyot filter and its application to snapshot spectral imaging. OpEx 18, 5602–5608 (2010)

    Google Scholar 

  6. Gorman, A., Muyo, G., Harvey, A.R.: Snapshot spectral imaging using birefringent interferometry and image replication. The Optical Society (2010)

    Google Scholar 

  7. Tominaga, S.: Multichannel vision system for estimating surface and illumination functions. JOSA A 13, 2163–2173 (1996)

    Article  Google Scholar 

  8. Chi, C., Yoo, H., Ben-Ezra, M.: Multi-spectral imaging by optimized wide band illumination. IJCV 86, 140–151 (2010)

    Article  Google Scholar 

  9. DiCarlo, J.M., Xiao, F., Wandell, B.A.: Illuminating illumination. In: CIC, IS&T/SID, pp. 27–34 (2001)

    Google Scholar 

  10. Han, S., Sato, I., Okabe, T., Sato, Y.: Fast spectral reflectance recovery using DLP projector. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 323–335. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19315-6_25

    Chapter  Google Scholar 

  11. Lam, A., Subpa-Asa, A., Sato, I., Okabe, T., Sato, Y.: Spectral imaging using basis lights. In: BMVC. BMVA Press (2013)

    Google Scholar 

  12. Park, J.I., Lee, M.H., Grossberg, M.D., Nayar, S.K.: Multispectral imaging using multiplexed illumination. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  13. Forsyth, D., Zisserman, A.: Mutual illumination. In: CVPR, pp. 466–473 (1989)

    Google Scholar 

  14. Forsyth, D., Zisserman, A.: Shape from shading in the light of mutual illumination. Image Vis. Comput. 8, 42–49 (1990)

    Article  Google Scholar 

  15. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. In: ACM SIGGRAPH, pp. 935–944 (2006)

    Google Scholar 

  16. Liao, M., Huang, X., Yang, R.: Interreflection removal for photometric stereo by using spectrum-dependent albedo. In: CVPR, pp. 689–696 (2011)

    Google Scholar 

  17. Fu, Y., Lam, A., Matsushita, Y., Sato, I., Sato, Y.: Interreflection removal using fluorescence. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 203–217. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_14

    Google Scholar 

  18. Nam, G., Kim, M.: Multispectral photometric stereo for acquiring high-fidelity surface normals. Comput. Graph. Appl. 34, 57–68 (2014)

    Article  Google Scholar 

  19. Imai, F.H., Rosen, M.R., Berns, R.S.: Comparison of spectrally narrow-band capture versus wide-band with a priori sample analysis for spectral reflectance estimation. In: Proceedings of Eighth Color Imaging Conference: Color Science and Engineering, Systems, Technologies and Applications, IS&T, pp. 234–241 (2000)

    Google Scholar 

  20. Jiang, J., Gu, J.: Recovering spectral reflectance under commonly available lighting conditions. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8 (2012)

    Google Scholar 

  21. Koenderink, J.J., van Doorn, A.J.: Geometrical modes as a general method to treat diffuse interreflections in radiometry. JOSA 73, 843–850 (1983)

    Article  Google Scholar 

  22. Nayar, S.K., Ikeuchi, K., Kanade, T.: Shape from interreflections. IJCV 6, 173–195 (1991)

    Article  Google Scholar 

  23. Nayar, S.K., Gao, Y.: Colored interreflections and shape recovery. In: Proceedings of the Image Understanding Workshop (1992)

    Google Scholar 

  24. Funt, B.V., Drew, M.S.: Color space analysis of mutual illumination. PAMI 15, 1319–1326 (1993)

    Article  Google Scholar 

  25. Funt, B.V., Drew, M.S., Ho, J.: Color constancy from mutual reflection. IJCV 6, 5–24 (1991)

    Article  Google Scholar 

  26. Seitz, S.M., Matsushita, Y., Kutulakos, K.N.: A theory of inverse light transport. In: ICCV, pp. 1440–1447 (2005)

    Google Scholar 

  27. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  28. Eggert, J., Korner, E.: Sparse coding and NMF. In: IJCNN, pp. 2529–2533 (2004)

    Google Scholar 

  29. Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. ArXiv e-prints (2010)

    Google Scholar 

  30. Zheng, Y., Liu, G., Sugimoto, S., Yan, S., Okutomi, M.: Practical low-rank matrix approximation under robust l1-norm. In: CVPR, pp. 1410–1417 (2012)

    Google Scholar 

  31. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7, 365–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant-in-Aid for Scientific Research on Innovative Areas (No.15H05918) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinqiang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Okawa, H., Zheng, Y., Lam, A., Sato, I. (2017). Spectral Reflectance Recovery with Interreflection Using a Hyperspectral Image. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics