Skip to main content

Enhancing Direct Camera Tracking with Dense Feature Descriptors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Abstract

Direct camera tracking is a popular tool for motion estimation. It promises more precise estimates, enhanced robustness as well as denser reconstruction efficiently. However, most direct tracking algorithms rely on the brightness constancy assumption, which is seldom satisfied in the real world. This means that direct tracking is unsuitable when dealing with sudden and arbitrary illumination changes. In this work, we propose a non-parametric approach to address illumination variations in direct tracking. Instead of modeling illumination, or relying on difficult to optimize robust similarity metrics, we propose to directly minimize the squared distance between densely evaluated local feature descriptors. Our approach is shown to perform well in terms of robustness and runtime. The algorithm is evaluated on two direct tracking problems: template tracking and direct visual odometry and using a variety of feature descriptors proposed in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: Proceedings of the International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  2. Comport, A.I., Malis, E., Rives, P.: Real-time quadrifocal visual odometry. Int. J. Robot. Res. 29, 245–266 (2010)

    Article  Google Scholar 

  3. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10605-2_54

    Google Scholar 

  4. Handa, A., Newcombe, R.A., Angeli, A., Davison, A.J.: Real-time camera tracking: when is high frame-rate best? In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 222–235. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_17

    Chapter  Google Scholar 

  5. Salas-Moreno, R., Glocken, B., Kelly, P., Davison, A.: Dense planar SLAM. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 157–164 (2014)

    Google Scholar 

  6. Newcombe, R., Lovegrove, S., Davison, A.: DTAM: Dense tracking and mapping in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327 (2011)

    Google Scholar 

  7. Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 267–277. Springer, Heidelberg (2000). doi:10.1007/3-540-44480-7_18

    Chapter  Google Scholar 

  8. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  9. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  10. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision (DARPA). In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  11. Bartoli, A.: Groupwise geometric and photometric direct image registration. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2098–2108 (2008)

    Article  Google Scholar 

  12. Evangelidis, G.D., Psarakis, E.Z.: Parametric image alignment using enhanced correlation coefficient maximization. PAMI 30, 1858–1865 (2008)

    Article  Google Scholar 

  13. Dowson, N., Bowden, R.: Mutual information for Lucas-Kanade tracking (MILK): an inverse compositional formulation. PAMI 30, 180–185 (2008)

    Article  Google Scholar 

  14. Müller, T., Rabe, C., Rannacher, J., Franke, U., Mester, R.: Illumination-robust dense optical flow using census signatures. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 236–245. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23123-0_24

    Chapter  Google Scholar 

  15. Black, M., Anandan, P.: A framework for the robust estimation of optical flow. In: 1993 Proceedings of the Fourth International Conference on Computer Vision, pp. 231–236 (1993)

    Google Scholar 

  16. Irani, M., Anandan, P.: Robust multi-sensor image alignment. In: 1998 Sixth International Conference on Computer Vision, pp. 959–966 (1998)

    Google Scholar 

  17. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  18. Baker, S., Matthews, I.: Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vision 56, 221–255 (2004)

    Article  Google Scholar 

  19. Klose, S., Heise, P., Knoll, A.: Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  20. Zia, M.Z., Nardi, L., Jack, A., Vespa, E., Bodin, B., Kelly, P.H.J., Davison, A.J.: Comparative design space exploration of dense and semi-dense SLAM. CoRR abs/1509.04648 (2015)

    Google Scholar 

  21. Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439 (2010)

    Google Scholar 

  22. Vogel, C., Roth, S., Schindler, K.: An evaluation of data costs for optical flow. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 343–353. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_37

    Chapter  Google Scholar 

  23. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  25. Torr, P.H.S., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 278–294. Springer, Heidelberg (2000). doi:10.1007/3-540-44480-7_19

    Chapter  Google Scholar 

  26. Furukawa, Y., Hernndez, C.: Multi-view stereo: a tutorial. Found. Trends Comput. Graph. Vis. 9, 1–148 (2015)

    Article  Google Scholar 

  27. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003)

    Google Scholar 

  28. Antonakos, E., Alabort-i Medina, J., Tzimiropoulos, G., Zafeiriou, S.: Feature-based Lucas-Kanade and active appearance models. IEEE Trans. Image Process. 24, 2617–2632 (2015)

    Article  MathSciNet  Google Scholar 

  29. Bristow, H., Lucey, S.: Regression-based image alignment for general object categories. CoRR abs/1407.1957 (2014)

    Google Scholar 

  30. Sevilla-Lara, L., Sun, D., Learned-Miller, E.G., Black, M.J.: Optical flow estimation with channel constancy. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 423–438. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_28

    Google Scholar 

  31. Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  32. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)

    Article  Google Scholar 

  33. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  34. Bristow, H., Lucey, S.: In defense of gradient-based alignment on densely sampled sparse features. In: Hassner, T., Liu, C. (eds.) Dense Image Correspondences for Computer Vision, pp. 135–152. Springer, Cham (2016). doi:10.1007/978-3-319-23048-1_7

    Chapter  Google Scholar 

  35. Liu, C., Yuen, J., Torralba, A.: SIFT flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33, 978–994 (2011)

    Article  Google Scholar 

  36. Crivellaro, A., Lepetit, V.: Robust 3D tracking with descriptor fields. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  37. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  38. Alismail, H., Browning, B., Lucey, S.: Bit-Planes: Dense Subpixel Alignment of Binary Descriptors. CoRR abs/1602.00307 (2016)

    Google Scholar 

  39. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994). doi:10.1007/BFb0028345

    Google Scholar 

  40. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  41. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  42. Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vis. Comput. 15, 59–76 (1997)

    Article  Google Scholar 

  43. Engel, J., Stueckler, J., Cremers, D.: Large-scale direct SLAM with stereo cameras. In: International Conference on Intelligent Robots and Systems (IROS) (2015)

    Google Scholar 

  44. Peris, M., Maki, A., Martull, S., Ohkawa, Y., Fukui, K.: Towards a simulation driven stereo vision system. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1038–1042 (2012)

    Google Scholar 

  45. Martull, S., Peris, M., Fukui, K.: Realistic CG stereo image dataset with ground truth disparity maps. In: ICPR workshop TrakMark 2012, vol. 111, pp. 117–118 (2012)

    Google Scholar 

  46. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR), pp. 1–16 (2011)

    Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Alismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alismail, H., Browning, B., Lucey, S. (2017). Enhancing Direct Camera Tracking with Dense Feature Descriptors. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics