Skip to main content

Combining Texture and Shape Cues for Object Recognition with Minimal Supervision

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

Abstract

We present a novel approach to object classification and detection which requires minimal supervision and which combines visual texture cues and shape information learned from freely available unlabeled web search results. The explosion of visual data on the web can potentially make visual examples of almost any object easily accessible via web search. Previous unsupervised methods have utilized either large scale sources of texture cues from the web, or shape information from data such as crowdsourced CAD models. We propose a two-stream deep learning framework that combines these cues, with one stream learning visual texture cues from image search data, and the other stream learning rich shape information from 3D CAD models. To perform classification or detection for a novel image, the predictions of the two streams are combined using a late fusion scheme. We present experiments and visualizations for both tasks on the standard benchmark PASCAL VOC 2007 to demonstrate that texture and shape provide complementary information in our model. Our method outperforms previous web image based models, 3D CAD model based approaches, and weakly supervised models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://3dwarehouse.sketchup.com.

  2. 2.

    http://shapenet.cs.stanford.edu/.

  3. 3.

    http://www.autodesk.com/store/products/3ds-max.

References

  1. Bergamo, A., Torresani, L.: Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. In: Advances in Neural Information Processing Systems, pp. 181–189 (2010)

    Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  3. Chen, X., Gupta, A.: Webly supervised learning of convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1431–1439 (2015)

    Google Scholar 

  4. Chen, X., Shrivastava, A., Gupta, A.: Neil: extracting visual knowledge from web data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1409–1416 (2013)

    Google Scholar 

  5. Chen, X., Shrivastava, A., Gupta, A.: Enriching visual knowledge bases via object discovery and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2027–2034 (2014)

    Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  8. Divvala, S., Farhadi, A., Guestrin, C.: Learning everything about anything: webly-supervised visual concept learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3270–3277 (2014)

    Google Scholar 

  9. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  10. Fan, J., Shen, Y., Zhou, N., Gao, Y.: Harvesting large-scale weakly-tagged image databases from the web. In: CVPR, pp. 802–809 (2010)

    Google Scholar 

  11. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)

    Article  Google Scholar 

  12. Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from internet image searches. Proc. IEEE 98, 1453–1466 (2010)

    Article  Google Scholar 

  13. Fragkiadaki, K., Arbelaez, P., Felsen, P., Malik, J.: Learning to segment moving objects in videos. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4083–4090 (2015)

    Google Scholar 

  14. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. arXiv preprint arXiv:1311.2524 (2013)

  15. Hariharan, B., Malik, J., Ramanan, D.: Discriminative decorrelation for clustering and classification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 459–472. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33765-9_33

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  17. Hoffman, J., Guadarrama, S., Tzeng, E., Donahue, J., Girshick, R.B., Darrell, T., Saenko, K.: LSDA: Large Scale Detection Through Adaptation. CoRR abs/1407.5035 (2014)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  20. Li, L.-J., Fei-Fei, L.: Optimol: automatic online picture collection via incremental model learning. Int. J. Comput. Vis. 88, 147–168 (2010)

    Article  Google Scholar 

  21. Liebelt, J., Schmid, C.: Multi-view object class detection with a 3D geometric model. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1688–1695 (2010)

    Google Scholar 

  22. Lin, T.-Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  23. Peng, X., Sun, B., Ali, K., Saenko, K.: Learning deep object detectors from 3D models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1278–1286 (2015)

    Google Scholar 

  24. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  25. Schroff, F., Criminisi, A., Zisserman, A.: Harvesting image databases from the web. IEEE Trans. Pattern Anal. Mach. Intell. 33, 754–766 (2011)

    Article  Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS 2015) (2015)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  28. Siva, P., Xiang, T.: Weakly supervised object detector learning with model drift detection. In: IEEE International Conference on Computer Vision (ICCV 2011), pp. 343–350 (2011)

    Google Scholar 

  29. Song, H.O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z., Darrell, T.: On learning to localize objects with minimal supervision. arXiv preprint arXiv:1403.1024 (2014)

  30. Stark, M., Goesele, M., Schiele, B.: Back to the future: learning shape models from 3D CAD data. In: BMVC, vol. 2 (2010)

    Google Scholar 

  31. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2686–2694 (2015)

    Google Scholar 

  32. Sun, B., Saenko, K.: From virtual to reality: fast adaptation of virtual object detectors to real domains. In: BMVC (2014)

    Google Scholar 

  33. Sun, M., Su, H., Savarese, S., Fei-Fei, L.: A multi-view probabilistic model for 3D object classes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1247–1254 (2009)

    Google Scholar 

  34. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842 (2014)

  35. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Comput. 12(6), 1247–1283 (2000)

    Article  Google Scholar 

  36. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., Li, L.-J.: The new data and new challenges in multimedia research. arXiv preprint arXiv:1503.01817 (2015)

  37. Welling, M.: Fisher Linear Discriminant Analysis. Department of Computer Science, University of Toronto, vol. 3 (2005)

    Google Scholar 

  38. Xia, Y., Cao, X., Wen, F., Sun, J.: Well begun is half done: generating high-quality seeds for automatic image dataset construction from web. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 387–400. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_26

    Google Scholar 

  39. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  40. Zhou, B., Jagadeesh, V., Piramuthu, R.: Conceptlearner: discovering visual concepts from weakly labeled image collections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2015)

    Google Scholar 

  41. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). doi:10.1007/978-3-319-10602-1_26

    Google Scholar 

Download references

Acknowledgement

This research was supported by NSF award IIS-1451244 and a generous donation from the NVIDIA corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingchao Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Peng, X., Saenko, K. (2017). Combining Texture and Shape Cues for Object Recognition with Minimal Supervision. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics