Skip to main content

Ultrasound Speckle Reduction via \(L_{0}\) Minimization

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10113))

Included in the following conference series:

  • 2466 Accesses

Abstract

Speckle reduction is a crucial prerequisite of many computer-aided ultrasound diagnosis and treatment systems. However, most of existing speckle reduction filters concentrate the blurring near features and introduced the hole artifacts, making the subsequent processing procedures complicated. Optimization-based methods can globally distribute such blurring, leading to better feature preservation. Motivated by this, we propose a novel optimization framework based on \(L_{0}\) minimization for feature preserving ultrasound speckle reduction. We observed that the GAP, which integrates gradient and phase information, is extremely sparser in despeckled images than in speckled images. Based on this observation, we propose the \(L_{0}\) minimization framework to remove speckle noise and simultaneously preserve features in ultrasound images. It seeks for the \(L_{0}\) sparsity of the \(\textit{GAP}\) values, and such sparsity is achieved by reducing small \(\textit{GAP}\) values to zero in an iterative manner. Since features have larger \(\textit{GAP}\) magnitudes than speckle noise, the proposed \(L_{0}\) minimization is capable of effectively suppressing the speckle noise. Meanwhile, the rest of \(\textit{GAP}\) values corresponding to prominent features are kept unchanged, leading to better preservation of those features. In addition, we propose an efficient and robust numerical scheme to transform the original intractable \(L_{0}\) minimization into several sub-optimizations, from which we can quickly find their closed-form solutions. Experiments on synthetic and clinical ultrasound images demonstrate that our approach outperforms other state-of-the-art despeckling methods in terms of noise removal and feature preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ultrasoundcases.info.

References

  1. Vegas-Sanchez-Ferrero, G., Aja-Fernandez, S., Martin-Fernandez, M., Frangi, A.F., Palencia, C.: Probabilistic-driven oriented speckle reducing anisotropic diffusion with application to cardiac ultrasonic images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 518–525. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15705-9_63

    Chapter  Google Scholar 

  2. Flores, W.G., de Albuquerque Pereira, W.C., Infantosi, A.F.C.: Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors. Ultrasound Med. Biol. 40, 2609–2621 (2014)

    Article  Google Scholar 

  3. Wang, B., Cao, T., Dai, Y., Liu, D.C.: Ultrasound speckle reduction via super resolution and nonlinear diffusion. In: Zha, H., Taniguchi, R., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5996, pp. 130–139. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12297-2_13

    Chapter  Google Scholar 

  4. Cheng, H., Shan, J., Ju, W., Guo, Y., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 43, 299–317 (2010)

    Article  MATH  Google Scholar 

  5. Esakkirajan, S., Vimalraj, C.T., Muhammed, R., Subramanian, G.: Adaptive wavelet packet-based de-speckling of ultrasound images with bilateral filter. Ultrasound Med. Biol. 39, 2463–2476 (2013)

    Article  Google Scholar 

  6. Balocco, S., Gatta, C., Pujol, O., Mauri, J., Radeva, P.: SRBF: speckle reducing bilateral filtering. Ultrasound Med. Biol. 36, 1353–1363 (2010)

    Article  Google Scholar 

  7. Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18, 2221–2229 (2009)

    Article  MathSciNet  Google Scholar 

  8. Yang, J., Fan, J., Ai, D., Wang, X., Zheng, Y., Tang, S., Wang, Y.: Local statistics and non-local mean filter for speckle noise reduction in medical ultrasound image. IEEE Trans. Image Process. 195, 88–95 (2016)

    Google Scholar 

  9. Tay, P.C., Garson, C.D., Acton, S.T., Hossack, J.A.: Ultrasound despeckling for contrast enhancement. IEEE Trans. Image Process. 19, 1847–1860 (2010)

    Article  MathSciNet  Google Scholar 

  10. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23, 5638–5653 (2014)

    Article  MathSciNet  Google Scholar 

  11. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via \(L_{0}\) gradient minimization. IEEE Trans. Image Process. 30, 174 (2011)

    Google Scholar 

  12. Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE Trans. Image Process. 24, 120–129 (2015)

    Article  MathSciNet  Google Scholar 

  13. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11, 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  14. Belaid, A., Boukerroui, D., Maingourd, Y., Lerallut, J.F.: Phase-based level set segmentation of ultrasound images. IEEE Trans. Image Process. 15, 138–147 (2011)

    Google Scholar 

  15. Khare, A., Khare, M., Jeong, Y., Kim, H., Jeon, M.: Despeckling of medical ultrasound images using daubechies complex wavelet transform. Sig. Process. 90, 428–439 (2010)

    Article  MATH  Google Scholar 

  16. Cardoso, F.M., Matsumoto, M.M., Furuie, S.S.: Edge-preserving speckle texture removal by interference-based speckle filtering followed by anisotropic diffusion. Ultrasound Med. Biol. 38, 1414–1428 (2012)

    Article  Google Scholar 

  17. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, vol. 2, pp. 60–65 (2005)

    Google Scholar 

  18. Yu, J., Tan, J., Wang, Y.: Ultrasound speckle reduction by a Susan-controlled anisotropic diffusion method. Pattern Recogn. 43, 3083–3092 (2010)

    Article  Google Scholar 

  19. Morrone, M.C., Ross, J., Burr, D.C., Owens, R.: Mach bands are phase dependent. Nature 324, 250–253 (1986)

    Article  Google Scholar 

  20. Kovesi, P.: Symmetry and asymmetry from local phase. In: Tenth Australian Joint Conference on Artificial Intelligence, vol. 190. Citeseer (1997)

    Google Scholar 

  21. Kovesi, P.: Image features from phase congruency. Nature 1, 1–26 (1999)

    Google Scholar 

  22. Boukerroui, D., Noble, J.A., Brady, M.: On the choice of band-pass quadrature filters. Nature 21, 53–80 (2004)

    MathSciNet  Google Scholar 

  23. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Nature 30, 117–156 (1998)

    Google Scholar 

  24. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4, 932–946 (1995)

    Article  Google Scholar 

  25. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)

    Google Scholar 

  26. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63, 1–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yi, S., Wang, X., Lu, C., Jia, J.: \(L_{0}\) regularized stationary time estimation for crowd group analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2211–2218 (2014)

    Google Scholar 

  28. Massoptier, L., Casciaro, S.: A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans. Eur. Radiol. 18, 1658–1665 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

We thank reviewers for the various valuable comments. This work was supported by the Hong Kong Research Grants Council General Research Fund (Project No. CUHK 14202514), Hong Kong Innovation and Technology Fund for Hong Kong-Shenzhen Innovation Circle Funding Program (No. GHP/002/13SZ and SGLH20131010151755080), the Natural Science Foundation of Guangdong Province (Project No. 2014A030310381), the National Natural Science Foundation of China (Project No. 61233012 and 61305097), the Research and Development Project of Guangdong Key Laboratory of Robotics and Intelligent Systems (Grant No. ZDSYS20140509174140672), and Shenzhen Basic Research Program (Project No. JCYJ20150525092940988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhu, L. et al. (2017). Ultrasound Speckle Reduction via \(L_{0}\) Minimization. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10113. Springer, Cham. https://doi.org/10.1007/978-3-319-54187-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54187-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54186-0

  • Online ISBN: 978-3-319-54187-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics