Advertisement

Subspace Learning Based Low-Rank Representation

  • Kewei TangEmail author
  • Xiaodong Liu
  • Zhixun SuEmail author
  • Wei Jiang
  • Jiangxin Dong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10111)

Abstract

Subspace segmentation has been a hot topic in the past decades. Recently, spectral-clustering based methods arouse broad interests, however, they usually consider the similarity extraction in the original space. In this paper, we propose subspace learning based low-rank representation to learn a subspace favoring the similarity extraction for the low-rank representation. The process of learning the subspace and achieving the representation is conducted simultaneously and thus they can benefit from each other. After extending the linear projection to nonlinear mapping, our method can handle manifold clustering problem which is a general case of subspace segmentation. Moreover, our method can also be applied in the problem of recognition by adding suitable penalty on the learned subspace. Extensive experimental results confirm the effectiveness of our method.

Keywords

Principle Component Analysis Near Neighbor Affinity Matrix Dimensionality Reduction Method Original Data Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The work of K. Tang was supported by the Educational Commission of Liaoning Province, China (No. L201683662). The work of Z. Su was supported by the National Natural Science Foundation of China (No. 61572099), National Science and Technology Major Project (No. 2014ZX04001011, ZX20140419). The work of W. Jiang was supported by the Natural Science Foundation of Liaoning Province, China (No. 60875029).

Supplementary material

416257_1_En_27_MOESM1_ESM.pdf (124 kb)
Supplementary material 1 (pdf 124 KB)

References

  1. 1.
    Soltanolkotabi, M., Candès, E.J.: A geometric analysis of subspace clustering with outliers. Ann. Stat. 40, 2195–2238 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Vidal, R.: Subspace clustering. IEEE Sig. Process. Mag. 28, 52–68 (2011)CrossRefGoogle Scholar
  3. 3.
    Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)CrossRefGoogle Scholar
  5. 5.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35, 171–184 (2013)CrossRefGoogle Scholar
  6. 6.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2765–2781 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, S., Yuan, X., Yao, T., Yan, S., Shen, J.: Efficient subspace segmentation via quadratic programming. In: AAAI (2011)Google Scholar
  8. 8.
    Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33786-4_26 CrossRefGoogle Scholar
  9. 9.
    Lu, C., Feng, J., Lin, Z., Yan, S.: Correlation adaptive subspace segmentation by trace lasso. In: ICCV (2013)Google Scholar
  10. 10.
    Hu, H., Lin, Z., Feng, J., Zhou, J.: Smooth representation clustering. In: CVPR (2014)Google Scholar
  11. 11.
    Tang, K., Liu, R., Su, Z., Zhang, J.: Structure-constrained low-rank representation. IEEE Trans. Neural Netw. Learn. Syst. 25, 2167–2179 (2014)CrossRefGoogle Scholar
  12. 12.
    Tang, K., Dunson, D.B., Su, Z., Liu, R., Zhang, J., Dong, J.: Subspace segmentation by dense block and sparse representation. Neural Netw. 75, 66–76 (2016)CrossRefGoogle Scholar
  13. 13.
    Zhang, X.: Matrix Analysis and Applications. Tsinghua University Press, Beijing (2004)Google Scholar
  14. 14.
    Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: ICCV (2011)Google Scholar
  15. 15.
    Patel, V.M., Nguyen, H.V., Vidal, R.: Latent space sparse subspace clustering. In: ICCV (2013)Google Scholar
  16. 16.
    Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51 (2007)CrossRefGoogle Scholar
  17. 17.
    Souvenir, R., Pless, R.: Manifold clustering. In: ICCV (2005)Google Scholar
  18. 18.
    Wang, Y., Jiang, Y., Wu, Y., Zhou, Z.-H.: Multi-manifold clustering. In: Zhang, B.-T., Orgun, M.A. (eds.) PRICAI 2010. LNCS (LNAI), vol. 6230, pp. 280–291. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15246-7_27 CrossRefGoogle Scholar
  19. 19.
    Lin, Z., Chen, M., Wu, L., Ma, Y.: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical report, UILU-ENG-09-2215 (2009)Google Scholar
  20. 20.
    Cai, J., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tang, K., Zhang, J., Su, Z., Dong, J.: Bayesian low-rank and sparse nonlinear rerpesentation for manifold clustering. Neural Process. Lett. 44(3), 1–15 (2015)Google Scholar
  22. 22.
    Zhao, D., Lin, Z., Tang, X.: Classification via semi-Riemannian spaces. In: CVPR, pp. 1–8 (2008)Google Scholar
  23. 23.
    Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27, 1945–1959 (2005)CrossRefGoogle Scholar
  24. 24.
    Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: CVPR (2007)Google Scholar
  25. 25.
    Ho, J., Yang, M.H., Lim, J., Lee, K.C., Kriegman, D.J.: Clustering appearances of objects under varying illumination conditions. In: CVPR (2003)Google Scholar
  26. 26.
    Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27, 684–698 (2005)CrossRefGoogle Scholar
  27. 27.
    Nasihatkon, B., Hartley, R.I.: Graph connectivity in sparse subspace clustering. In: CVPR, pp. 2137–2144 (2011)Google Scholar
  28. 28.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical report, CUCS-005-96 (1996)Google Scholar
  29. 29.
    Yong, W., Yuan, J., Yi, W., Zhou, Z.: Spectral clustering on multiple manifolds. IEEE Trans. Neural Netw. Learn. Syst. 22, 1149–1161 (2011)CrossRefGoogle Scholar
  30. 30.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)Google Scholar
  31. 31.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)CrossRefGoogle Scholar
  32. 32.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)CrossRefGoogle Scholar
  33. 33.
    Liu, R., Lin, Z., Su, Z., Tang, K.: Feature extraction by learning lorentzian metric tensor and its extensions. Pattern Recogn. 43, 3298–3306 (2010)CrossRefzbMATHGoogle Scholar
  34. 34.
    Harandi, M.T., Sanderson, C., Shirazi, S.A., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: CVPR (2011)Google Scholar
  35. 35.
    Wang, W., Wang, R., Huang, Z., Shan, S., Chen, X.: Discriminant analysis on Riemannian manifold of Gaussian distributions for face recognition with image sets. In: CVPR (2015)Google Scholar
  36. 36.
    Wang, R., Guo, H., Davis, L.S., Dai, Q.: Covariance discriminative learning: a natural and efficient approach to image set classification. In: CVPR (2012)Google Scholar
  37. 37.
    Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12, 2385–2404 (2000)CrossRefGoogle Scholar
  38. 38.
    Kim, M., Kumar, S., Pavlovic, V., Rowley, H.A.: Face tracking and recognition with visual constraints in real-world videos. In: CVPR (2008)Google Scholar
  39. 39.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: CVPR (2003)Google Scholar
  40. 40.
    Rosipal, R., Trejo, L.J.: Kernel partial least squares regression in reproducing Kernel Hilbert space. J. Mach. Learn. Res. 2, 97–123 (2001)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of MathematicsLiaoning Normal UniversityDalianPeople’s Republic of China
  2. 2.School of Mathematical SciencesDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations