Skip to main content

Dynamics of Polymer Sheets Cutting Mechanism

  • Chapter
  • First Online:

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

In this Chapter the theory of a non-ideal mechanical system, presented in previous chapters, is applied for solving of the problem of dynamics of polymer sheets cutting mechanism. Great variety of mechanisms, tools and devices are made for cutting throughout of materials based on specific requirements connected with the properties of the cutting object, its dimensions and form, strength and elasticity, etc., but also on the characteristics of the cutting tool and driving motor (Artobolevskij 1971). Most of these tools are analyzed and discussed and shown in the textbooks for mechanical engineers and technicians. For all of them it is common that have a simple construction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amemiya, T., & Maeda, T. (2009). Directional force sensation by asymmetric oscillation from a double-layer slider-crank mechanism. Journal of Computing and Information Science in Engineering, 9, 1–8. art. no. 011001.

    Article  Google Scholar 

  • Amemiya, T., Kawabuchi, I., Ando, H., & Maeda, T. (2007). Double-layer slider-crank mechanism to generate pulling and pushing ground. In IEEE/RSJ International Conference on Intelligent Robots and Systems, art. no. 4399211 (pp. 2101–2106).

    Google Scholar 

  • Artobolevskij, I. I. (1971). Mechanisms in contemporary technique. Moscow: Nauka.

    Google Scholar 

  • Balthazar, J. M., Mook, D. T., Weber, H. I., Brasil, R. M. L. R. F., Fenili, A., Belato, D., et al. (2002). An overview of non-ideal vibrations. Meccanica, 330, 1–9.

    MATH  Google Scholar 

  • Balthazar, J. M., Mook, D. T., Weber, H. I., Brasil, R. M. I. R. F., Fenili, A., Beltano, D., et al. (2003). An overview on non-ideal vibrations. Meccanica, 38, 613–621.

    Article  MATH  Google Scholar 

  • Cveticanin, L., & Maretic, R. (2000). Dynamic analysis of a cutting mechanism. Mechanism and Machine Theory, 35, 1391–1411.

    Article  MATH  Google Scholar 

  • Cveticanin, L., Maretic, R., & Zukovic, M. (2012). Dynamics of polymer sheets cutting mechanism. Journal of Mechanical Engineering (Strojniski Vestnik), 58(5), 354–361.

    Article  Google Scholar 

  • Erkaya, S., Su, S., & Uzmay, I. (2007). Dynamic analysis of a slider-crank mechanism with eccentric connector and planetary gears. Mechanism and Machine Theory, 42, 393–408.

    Article  MATH  Google Scholar 

  • Goudas, I., & Natsiavas, S. (2004). Nonlinear dynamics of engine mechanisms with a flexible connection rod. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 218(2), 67–80.

    Google Scholar 

  • Goudas, I., Stavrakis, I., & Natsiavas, S. (2004). Dynamics of slider-crank mechanisms with flexible supports and non-ideal forcing. Nonlinear Dynamics, 35(3), 205–227.

    Article  MATH  Google Scholar 

  • Ha, J. L., Fung, R. F., Chen, K. Y., & Hsien, S. C. (2006). Dynamic modeling and identification of a slider-crank mechanism. Journal of Sound and Vibration, 289, 1019–1044.

    Article  Google Scholar 

  • Kazimierski, Z., & Wojewoda, J. (2011). Double internal combustion piston engine. Applied Energy, 88, 1983–1985.

    Article  Google Scholar 

  • Kim, H. S., Park, J. J., & Song, J. B. (2008). Safe joint mechanism using double slider mechanism and spring force. In 8th IEEE-RAS International Conference on Humanoid Robots 2008, Humanoids 2008, art. no. 4755934 (pp. 73–78).

    Google Scholar 

  • Komatsubara, H., Mitome, K.-I., & Sasaki, Y. (2007). A new cutting machine for elliptical cylinder. JSME (Japan Society of Mechanical Engineers) International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, 73, 891–896.

    Google Scholar 

  • Kononenko, V. O. (1969). Vibrating systems with a limited power supply. London: Iliffe Books Ltd.

    Google Scholar 

  • Koser, K. (2004). A slider crank mechanism based robot arm performance and dynamic analysis. Mechanism and Machine Theory, 39, 169–182.

    Article  MATH  Google Scholar 

  • Masia, L., Krebs, H. I., Cappa, P., & Hogen, N. (2007). Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE/ASME Transactions on Mechatronics, 12, 399–407.

    Article  Google Scholar 

  • Metallidis, P., & Natsiavas, S. (2003). Linear and nonlinear dynamics of reciprocating engines. International Journal of Non-Linear Mechanics, 38(5), 723–738.

    Article  MATH  Google Scholar 

  • Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear Oscillations. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Ogura, M., & Daidoji, S. (1982). Application and practice of the double slider crank mechanism for the air compressor. JSME (Japan Society of Mechanical Engineers) International Journal, Series B: Fluids and Thermal Engineering, 48, 1483–1491.

    Google Scholar 

  • Ren, T., He, B., Chen, J., & Jin, X. (2009). Non-sinusoidal waveform and parameters of distance changeable double-slider crank mechanism for mold. Chinese Journal of Mechanical Engineering, 45, 269–273.

    Article  Google Scholar 

  • Sandier, B. Z. (1999). Designing the mechanisms for automated machinery. New York: Academic Press.

    Google Scholar 

  • Wang, M., Song, Q., & Zhong, K. (2012). The double role piston pump based on the symmetrical tears and crank-link-slider mechanism driven by servo motor. Applied Mechanics and Materials, 121–126, 2308–2312.

    Google Scholar 

  • Wauer, J., & Buhrle, P. (1997). Dynamics of a flexible slider-crank mechanism driven by a non-ideal source of energy. Nonlinear Dynamics, 13, 221–242.

    Article  MATH  Google Scholar 

  • Xu, F., & Wang, X. (2008). Design and experiments on a new wheel-based cable climbing robot. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics, art. no. 4601697 (pp. 418–423). AIM.

    Google Scholar 

  • Xu, F., Wang, X., & Wang, L. (2011). Cable inspection robot for cable-stayed bridges: Design, analysis, and application. Journal of Field Robotics, 28, 441–459.

    Article  Google Scholar 

  • Zukovic, M., & Cveticanin, L. (2007). Chaotic responses in a stable Duffing system of non-ideal type. Journal of Vibration and Control, 13(6), 751–767.

    Article  MATH  Google Scholar 

  • Zukovic, M., & Cveticanin, L. (2009). Chaos in non-ideal mechanical system with clearance. Journal of Vibration and Control, 15(8), 1229–1246.

    Article  MathSciNet  MATH  Google Scholar 

  • Zukovic, M., Cveticanin, L., & Maretic, R. (2012). Dynamics of the cutting mechanism with flexible support and non-ideal forcing. Mechanism and Machine Theory, 58, 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livija Cveticanin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cveticanin, L., Zukovic, M., Balthazar, J.M. (2018). Dynamics of Polymer Sheets Cutting Mechanism. In: Dynamics of Mechanical Systems with Non-Ideal Excitation. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-54169-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54169-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54168-6

  • Online ISBN: 978-3-319-54169-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics