Skip to main content

Adaptive Operator Selection for Many-Objective Optimization with NSGA-III

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Abstract

The number of objectives in real-world problems has increased in recent years and better algorithms are needed to deal efficiently with it. One possible improvement to such algorithms is the use of adaptive operator selection mechanisms in many-objective optimization algorithms. In this work, two adaptive operator selection mechanisms, Probability Matching (PM) and Adaptive Pursuit (AP), are incorporated into the NSGA-III framework to autonomously select the most suitable operator while solving a many-objective problem. Our proposed approaches, NSGA-III\(_{\text {AP}}\) and NSGA-III\(_{\text {PM}}\), are tested on benchmark instances from the DTLZ and WFG test suits and on instances of the Protein Structure Prediction Problem. Statistical tests are performed to infer the significance of the results. The preliminary results of the proposed approaches are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reference Pareto Front R is a set of N uniformly distributed points on each problem. It can be calculated using a generator code available at https://github.com/JerryI00/SamplingPF.

References

  1. Brasil, C.R.S., Delbem, A.C.B., da Silva, F.L.B.: Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction. J. Comput. Chem. 34(20), 1719–1734 (2013)

    Article  Google Scholar 

  2. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Program. Evolvable Mach. 6(2), 163–190 (2005). http://dx.doi.org/10.1007/s10710-005-6164-x

    Article  Google Scholar 

  3. Conover, W.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999)

    Google Scholar 

  4. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi:10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)

    Chapter  Google Scholar 

  7. Durillo, J.J., Nebro, A.J.: Jmetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)

    Article  Google Scholar 

  8. Gonçalves, R., Almeida, C., Pavelski, L., Venske, S., Kuk, J., Pozo, A.: Adaptive Operator Selection in NSGA-III. In: To appear in Proceedings of Brazilian Conference on Intelligent Systems, BRACIS 2016 (2016)

    Google Scholar 

  9. Gong, W., Fialho, Á., Cai, Z., Li, H.: Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)

    Article  MathSciNet  Google Scholar 

  10. Handl, J., Lovell, S.C., Knowles, J.: Investigations into the effect of multiobjectivization in protein structure prediction. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 702–711. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87700-4_70

    Chapter  Google Scholar 

  11. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  12. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)

    Google Scholar 

  13. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)

    Article  Google Scholar 

  14. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  15. Li, K., Fialho, Á., Kwong, S.: Multi-objective differential evolution with adaptive control of parameters and operators. In: International Conference on Learning and Intelligent Optimization, pp. 473–487 (2011)

    Google Scholar 

  16. Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)

    Article  Google Scholar 

  17. Lin, Q., Liu, Z., Yan, Q., Du, Z., Coello, C.A.C., Liang, Z., Wang, W., Chen, J.: Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf. Sci. 339, 332–352 (2016)

    Article  Google Scholar 

  18. MacKerell, A.D., Banavali, N., Foloppe, N.: Development and current status of the charmm force field for nucleic acids. Biopolymers 56(4), 257–265 (2000)

    Article  Google Scholar 

  19. Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S., Deb, K., Ouni, A.: Many-objective software remodularization using NSGA-III. ACM Trans. Softw. Eng. Methodo. 24(3), 17:1–17:45 (2015)

    Article  Google Scholar 

  20. Ponder, J.W.: Tinker: Software tools for molecular design. Washington University School of Medicine, Saint Louis, MO 3 (2004)

    Google Scholar 

  21. Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 34–49. Springer, Cham (2015). doi:10.1007/978-3-319-15892-1_3

    Google Scholar 

  22. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Conference on Genetic and Evolutionary Computation, pp. 1539–1546 (2005)

    Google Scholar 

  24. Tramontano, A.: Protein Structure Prediction: Concepts and Applications. Wiley, New Year (2006)

    Google Scholar 

  25. Venske, S.M., Gonçalves, R.A., Delgado, M.R.: ADEMO/D: multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing 127, 65–77 (2014)

    Article  Google Scholar 

  26. Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 661–668. ACM, New York (2014)

    Google Scholar 

  27. Yuan, Y., Xu, H., Wang, B.: An experimental investigation of variation operators in reference-point based many-objective optimization. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 775–782. ACM, New York (2015)

    Google Scholar 

  28. Zaki, M., Bystroff, C. (eds.): Protein Structure Prediction. Methods in Molecular Biology, vol. 413, 2nd edn. Humana Press/Springer, Heidelberg (2008)

    Google Scholar 

  29. Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CNPq Grants 456179/2014-3, 483974/2013-7, and 311605/2011-7 for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gonçalves, R.A., Pavelski, L.M., de Almeida, C.P., Kuk, J.N., Venske, S.M., Delgado, M.R. (2017). Adaptive Operator Selection for Many-Objective Optimization with NSGA-III. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics