Skip to main content

Prevention and Treatment of Obesity-Related Diseases by Diet and Medicinal Plants

  • Chapter
  • First Online:
Anti-diabetes and Anti-obesity Medicinal Plants and Phytochemicals

Abstract

Obesity increases the risk for many pathological processes including type 2 diabetes, hypertension, hyperlipidemia, cardiovascular diseases, and certain types of cancer. Thus, obesity mitigation strategies should take into account these secondary pathologies in addition to promoting weight loss. Progress in biological and particularly in biochemical studies with respect to adipocytes in recent years has gradually clarified that the dysregulation of adipose tissue expansion accompanied by hyperplasia (increase in the total number) and hypertrophy (increase in the size) of adipocytes causes obesity. Adipocytes are well recognized as endocrine secretory cells as well as fat storage cells, which produce biologically active molecules such as hormones, cytokines, and other factors. These molecules, collectively called adipocytokines (recently often called adipokine), are involved in regulating adipocyte functions and metabolism through a network of endocrine, paracrine, and autocrine signals and thus modulate adipocyte biology. Adipocytokines include tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), plasminogen activator inhibitor-1 (PAI-1), angiotensinogen, tissue factor, transforming growth factor-β (TGF-β), leptin, adiponectin, resistin, and certain chemokines such as monocyte chemoattractant protein-1 (MCP-1). Most adipocytokines are increasingly produced with increasing adiposity and are closely associated with obesity-related pathologies (e.g., metabolic syndrome, diabetes, and cardiovascular diseases). In this chapter, we will focus on prevention and treatment of obesity-related diseases by diets and medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rayalam S, Della-Fera MA, Baile CA (2008) Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem 19:717–726

    Article  CAS  Google Scholar 

  2. Visscher TL, Seidell JC (2001) The public health impact of obesity. Annu Rev Public Health 22:355–375

    Article  CAS  Google Scholar 

  3. Graf BL, Raskin I, Cefalu WT, Ribnicky DM (2010) Plant-derived therapeutics for the treatment of metabolic syndrome. Curr Opin Investig Drugs 11:1107–1115

    CAS  Google Scholar 

  4. Billington CJ, Epstein LH, Goodwin NJ et al (2000) Overweight, obesity, and health risk. Arch Intern Med 160:898–904

    Article  Google Scholar 

  5. Atkinson RL (2014) Current status of the field of obesity. Trends Endocrinol Metab 25:283–284

    Article  CAS  Google Scholar 

  6. Goldstein DJ (1992) Beneficial health effects of modest weight loss. Int J Obes Relat Metab Disord 16:397–415

    CAS  Google Scholar 

  7. Astrup A (2001) Healthy lifestyles in Europe: prevention of obesity and type II diabetes by diet and physical activity. Public Health Nutr 4:499–515

    Article  CAS  Google Scholar 

  8. Kruger J, Galuska DA, Serdula MK, Jones DA (2004) Attempting to lose weight: specific practices among U.S. adults. Am J Prev Med 26:402–406

    Article  Google Scholar 

  9. Wadden TA (1993) Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials. Ann Intern Med 119:688–693

    Article  CAS  Google Scholar 

  10. Stern JS, Hirsch J, Blair SN, Foreyt JP, Frank A, Kumanyika SK et al (1995) Weighing the options: criteria for evaluating weight-management programs. The Committee to Develop Criteria for Evaluating the Outcomes of Approaches to Prevent and Treat Obesity. Obes Res 3:591–604

    Article  CAS  Google Scholar 

  11. Trivedi T, Liu J, Probst J, Merchant A, Jhones S, Martin AB (2015) Obesity and obesity-related behaviors among rural and urban adults in the USA. Rural Remote Health 15:3267

    Google Scholar 

  12. Jilka RL (2002) Osteoblast progenitor fate and age-related bone loss. J Musculoskelet Neuronal Interact 2:581–583

    CAS  Google Scholar 

  13. Newman AB, Lee JS, Visser M, Goodpaster BH, Kritchevsky SB, Tylavsky FA et al (2005) Weight change and the conservation of lean mass in old age: the health, Aging and Body Composition Study. Am J Clin Nutr 82:872–878

    CAS  Google Scholar 

  14. Knoke JD, Barrett-Connor E (2003) Weight loss: a determinant of hip bone loss in older men and women. The Rancho Bernardo Study. Am J Epidemiol 158:1132–1138

    Article  Google Scholar 

  15. Saad B, Azaizeh H, Said O (2005) Tradition and perspectives of Arab herbal medicine: a review. eCAM 2:475–479

    Google Scholar 

  16. Saad B, Zaid H, Said O (2013) Tradition and perspectives of diabetes treatment in Greco-Arab and Islamic medicine. In: Watson RR, Preedy VR (eds) Bioactive food as dietary interventions for diabetes. Academic Press, San Diego, pp 319–326

    Chapter  Google Scholar 

  17. Seyedan A, Alshawsh MA, Alshagga MA, Koosha S, Mohamed Z (2015) Medicinal plants and their inhibitory activities against pancreatic lipase: a review. eCAM 2015, Article ID 973143. doi:10.1155/2015/973143

  18. Yang CS, Zhang J, Zhang L, Huang J, Wang Y (2016) Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 60:160–174

    Article  CAS  Google Scholar 

  19. Saad B, Said O (2011) Herbal medicine. In: Greco-Arab and Islamic herbal medicine: traditional system, ethics, safety, efficacy and regulatory issues. Wiley-Blackwell/Wiley, Hoboken, pp 47–71

    Chapter  Google Scholar 

  20. Aherne SA, O’Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18:75–81

    Article  CAS  Google Scholar 

  21. Siriwardhana N, Kalupahana NS, Cekanovac M, LeMieuxa M, Greerd B, Moustaid-Moussa N (2013) Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 24:613–623

    Article  CAS  Google Scholar 

  22. Hirai S, Takahashi N, Goto T, Lin S, Uemura T, Yu R, Kawada T (2010) Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediat Inflamm, Article ID 367838. doi:10.1155/2010/367838

  23. Heilbronn K, Campbell LV (2008) Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 14:1225–1230

    Article  CAS  Google Scholar 

  24. Gustafson B (2010) Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb 17:332–341

    Article  CAS  Google Scholar 

  25. Hotamisligil GS (2006) Inflammation and metabolic disorders. J Nat 444:860–867

    Article  CAS  Google Scholar 

  26. Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. J Cell 131:242–256

    Article  CAS  Google Scholar 

  27. Zeyda M, Stulnig TM (2009) Obesity, inflammation, and insulin resistance – a mini-review. Gerontology 55:379–386

    Article  CAS  Google Scholar 

  28. Chinetti G, Fruchart JC, Staels B (2000) Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 49:497–505

    Article  CAS  Google Scholar 

  29. Glass CK (2001) Potential roles of the peroxisome proliferatoractivated receptor-γ in macrophage biology and atherosclerosis. J Endocrinol 169:461–464

    Article  CAS  Google Scholar 

  30. Moore KJ, Rosen ED, Fitzgerald ML et al (2001) The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nat Med 7:41–47

    Article  CAS  Google Scholar 

  31. Yamauchi T, Kamon J, Waki H et al (2001) The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J Biol Chem 276:41245–41254

    Article  CAS  Google Scholar 

  32. Goto T, Takahashi N, Hirai S, Kawada T (2010) Various terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism. PPAR Research 2010, Article ID 483958. doi:10.1155/2010/483958

  33. He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z (2015) Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 20:9183–9213

    Article  CAS  Google Scholar 

  34. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer, how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  Google Scholar 

  35. Durackova Z (2010) Some current insights into oxidative stress. Physiol Res 59:459–469

    CAS  Google Scholar 

  36. Ishibashi T (2013) Molecular hydrogen, new antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases. Curr Pharm Des 19:6375–6381

    Article  CAS  Google Scholar 

  37. Debnath T, Kim da H, Lim BO (2013) Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 18:7253–7270

    Article  CAS  Google Scholar 

  38. Malhotra A, Nair P, Dhawan DK (2012) Premature mitochondrial senescence and related ultrastructural changes during lung carcinogenesis modulation by curcumin and resveratrol. Ultrastruct Pathol 36:179–184

    Article  Google Scholar 

  39. Anthwal A, Thakur BK, Rawat MS, Rawat DS, Tyagi AK, Aggarwal BB (2014) Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. Biomed Res Int 2014:524161

    Article  Google Scholar 

  40. Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB (2014) Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 559:91–99

    Article  CAS  Google Scholar 

  41. Brown AL, Lane J, Holyoak C, Nicol B, Mayes AE, Dadd T (2011) Health effects of green tea catechins in overweight and obese men: a randomised controlled cross-over trial. Br J Nutr 7:1–10

    Google Scholar 

  42. Zheng J, Yang B, Huang T, Yu Y, Yang J, Li D (2011) Green tea and black tea consumption and prostate cancer risk: an exploratory meta-analysis of observational studies. Nutr Cancer J 63:663–672

    Article  CAS  Google Scholar 

  43. Sun CL, Yuan JM, Lee MJ, Yang CS, Gao YT, Ross RK, Yu MC (2002) Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China. Carcinogenesis J 23:1497–1503

    Article  CAS  Google Scholar 

  44. Ahmad N, Fayes DK, Nieminen AL, Agarwal R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89:1881–1889

    Article  CAS  Google Scholar 

  45. Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A (2006) Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a one-year proof-of-principle study. J Cancer Res 66:1234–1240

    Article  CAS  Google Scholar 

  46. Kao YH, Hiipakka RA, Liao S (2000) Modulation of obesity by a green tea catechin. Am J Clin Nutr 72:1232–1234

    CAS  Google Scholar 

  47. Kao YH, Hiipakka RA, Liao S (2000) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinol J 141:980–987

    Article  CAS  Google Scholar 

  48. Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes (Lond) 24:252–258

    Article  CAS  Google Scholar 

  49. Kakuda T, Nozawa A, Unno T, Okamura N, Okai O (2000) Inhibiting effects of theanine on caffeine stimulation evaluated by EEG in the rat. Biosci Biotechnol Biochem 64:287–293

    Article  CAS  Google Scholar 

  50. Surh Y-J (2002) Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem Toxicol 40:1091–1097

    Article  CAS  Google Scholar 

  51. Kang J-H, Kim C-S, Han I-S, Kawada T, Yu R (2007) Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett 581:4389–4396

    Article  CAS  Google Scholar 

  52. Woo HM, Kang JH, Kawada T, Yoo H, Sung MK, Yu R (2007) Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes. Life Sci 80:926–931

    Article  CAS  Google Scholar 

  53. Kim CS, Kawada T, Kim BS et al (2003) Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal 15:299–306

    Article  CAS  Google Scholar 

  54. Isa Y, Miyakawa Y, Anagisawa MY et al (2008) 6-shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-α mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochem Biophys Res Commun 373:429–434

    Article  CAS  Google Scholar 

  55. Takahashi N, Kang M-S, Kuroyanagi K et al (2008) Auraptene, a citrus fruit compound, regulates gene expression as a PPARα agonist in HepG2 hepatocytes. Biofactors 33:25–32

    Article  CAS  Google Scholar 

  56. Ando C, Takahashi N, Hirai S et al (2009) Luteolin, a food derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett 583:3649–3654

    Article  CAS  Google Scholar 

  57. Ashraful Alam M, Subhan N, Mahbubur Rahman M, Uddin SJ, Reza HM, Sarker SD (2014) Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 5:404–417

    Article  Google Scholar 

  58. Jain M, Parmar HS (2011) Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res 60:483–491

    Article  CAS  Google Scholar 

  59. Gopinath K, Sudhandiran G (2012) Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of Nrf2 signalling pathway. Neuroscience 227:134–143

    Article  CAS  Google Scholar 

  60. Riaz M, Zia Ul Haq M, Saad B (2016) Anthocyanins and human health: biomolecular and therapeutic aspect. Springerbrief, Springer, The Netherlands

    Google Scholar 

  61. Uemura T, Hirai S, Mizoguchi N, Goto T, Lee LY, Taketani K, Nakano Y, Jinji SJ, Hoshino S, Tsuge N, Narukami T, Takahashi N, Kawada T (2010) Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Mol Nutr Food Res 54:1596–1608

    Article  CAS  Google Scholar 

  62. Yeh WC, Cao Z, Classon M, McKnight SL (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9:168–181

    Article  CAS  Google Scholar 

  63. Salem ML, Hossain MS (2000) Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol 22:729–740

    Article  CAS  Google Scholar 

  64. Gilani AH, Jabeen Q, Khan M (2004) A review of medicinal uses and pharmacological activities of Nigella sativa. Pak J Biol Sci 7:441–451

    Article  Google Scholar 

  65. Salem ML (2005) Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol 5:1749–1770

    Article  CAS  Google Scholar 

  66. Hosseini B, Saedisomeolia A, Wood LG, Yaseri M, Tavasoli S (2016) Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: a randomized controlled clinical trial. Complement Ther Clin Pract 22:44–50

    Article  Google Scholar 

  67. Lansky EP, Newman RA (2007) Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J Ethnopharmacol 109:177–206

    Article  CAS  Google Scholar 

  68. Shaygannia E, Bahmani M, Zamanzad B, Rafieian-Kopaei M (2015) A review study on Punica granatum L. JEBCAM 2015. doi:10.1177/2156587215598039

  69. Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81:1343–1351

    Article  CAS  Google Scholar 

  70. Aguirre L, Fernández-Quintela A, Arias N, Portillo MP (2014) Resveratrol: anti-obesity mechanisms of action. Molecules 19:18632–18655

    Article  Google Scholar 

  71. Kim M, Park J, Seo M, Jung J, Lee Y, Kang K (2010) Genistein and daidzein repress adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via Wnt/beta-catenin signalling or lipolysis. Cell Prolif 2:594–605

    Article  Google Scholar 

  72. Davis J, Higginbotham A, O’Connor T, Moustaid-Moussa N, Tebbe A, Kim YC et al (2007) Soy protein and isoflavones influence adiposity and development of metabolic syndrome in the obese male ZDF rat. Ann Nutr Metab 51:42–52

    Article  CAS  Google Scholar 

  73. Velasquez MT, Bhathena SJ (2007) Role of dietary soy protein in obesity. Int J Med Sci 4:72–82

    Article  CAS  Google Scholar 

  74. Kennedy A, Martinez K, Chuang CC, LaPoint K, McIntosh M (2009) Saturated fatty acid mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J Nutr 139:1–4

    Article  CAS  Google Scholar 

  75. Granados N, Amengual J, Ribot J, Palou A, Luisa BM (2011) Distinct effects of oleic acid and its trans-isomer elaidic acid on the expression of myokines and adipokines in cell models. Br J Nutr 105:1226–1234

    Article  CAS  Google Scholar 

  76. Rao PV, Gan SH (2014) Cinnamon: a multifaceted medicinal plant. Evid Based Complement Alternat Med, Article ID 642942. doi:10.1155/2014/642942

  77. Vaneckova I, Lenka ML, Behuliak M, Veronika NV, Zicha J, Kunes J (2014) Obesity-related hypertension: possible pathophysiological mechanisms. J Endocrinol 223:R63–R78

    Article  CAS  Google Scholar 

  78. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G, Stec DE (2010) Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 285:17271–17276

    Google Scholar 

  79. Di Chiara T, Argano C, Corrao S, Scaglione R, Licata G (2012) Hypoadiponectinemia: a link between visceral obesity and metabolic syndrome. J Nutr Metab, Article ID 175245. doi:10.1155/2012/175245

  80. Vanamala J, Kester AC, Heuberger AL, Reddivari L (2012) Mitigation of obesity-promoted diseases by Nigella sativa and thymoquinone. Plant Foods Hum Nutr 67:111–119

    Google Scholar 

  81. Leong XF, Mustafa MR, Jaarin K (2013) Nigella sativa and its protective role in oxidative stress and hypertension. Evid Based Complement Alternat Med, Article ID 120732, 9 pages. doi:10.1155/2013/120732

  82. El-Tahir KEH, Al-Ajmi MF, Al-Bekairi AM (2003) Some cardiovascular effects of the dethymoquinonated Nigella sativa volatile oil and its major components 𝛼-pinene and p-cymene in rats. Saudi Pharm J 11:104–110

    Google Scholar 

  83. Gamboa-Gómez CI, Rocha-Guzmán NE, Gallegos-Infante JA, Moreno-Jiménez MR, Vázquez-Cabral BD, González-Laredo RF (2015) Plants with potential use on obesity and its complications. EXCLI J 14:809–831

    Google Scholar 

  84. Ali BA, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 46:409–420

    Article  CAS  Google Scholar 

  85. Widmer RJ, Flammer AJ, Lerman LO, Lerman A (2015) The Mediterranean diet, its components, and cardiovascular disease. Am J Med 128:229–238

    Article  Google Scholar 

  86. Shen Y, Song SJ, Keum N, Park T (2014) Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis, eCAM 2014, Article ID 971890

    Google Scholar 

  87. de Bock M, Derraik JGB, Brennan CM, Biggs JB, Morgan PE et al (2013) Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One 8(3):e57622. doi:10.1371/journal.pone.0057622

  88. Saad B, Azaizeh H, Said O (2008) Arab herbal medicine. In: Watson RR, Preedy VR (eds) Botanical medicine in clinical practice. CABI, Wallingford

    Google Scholar 

  89. Saad B (2014) Greco-Arab and Islamic herbal medicine, a review. European J Med Plant 4:249–258

    Article  Google Scholar 

  90. Said O, Saad B, Fulder S, Amin R, Kassis E, Khalil K (2009) Hypolipidemic activity of extracts from Eriobotrya japonica and Olea europaea, traditionally used in the Greco-Arab medicine in maintaining healthy fat levels in the blood. Open Complement Med J 1:84–91

    Google Scholar 

  91. Susalit E, Agus N, Effendi I, Tjandrawinata RR, Nofiarny D et al (2011) Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with captopril. Phytomedicine 18:251–258

    Article  CAS  Google Scholar 

  92. Said O, Fulder S, Khalil K, Azaizeh H, Kassis E, Saad B (2008) Maintaining a physiological blood glucose level with “Glucolevel”, a combination of four anti-diabetes plants used in traditional Arab herbal medicine. eCAM 5:421–428

    Google Scholar 

  93. Alonso A, de la Fuente C, Martín-Arnau AM, de Irala J, Martínez JA, Martínez-González MA (2004) Fruit and vegetable consumption is inversely associated with blood pressure in a Mediterranean population with a high vegetable-fat intake: the Seguimiento Universidad de Navarra (SUN) study. Br J Nutr 92:311–319

    Google Scholar 

  94. Lin B, Morrison RM (2002) Higher fruit consumption linked with lower body mass index. Food Rev 25:28–32

    Google Scholar 

  95. Crowe F, Roddam AW, Key TJ et al (2011) European Prospective Investigation into Cancer and Nutrition (EPIC)-heart study collaborators. Fruit and vegetable intake and mortality from ischaemic heart disease: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-heart study. Eur Heart J 32:1235–1243

    Google Scholar 

  96. Good C, Holschuh N, Albertson AM, Eldridge AL (2008) Whole grain consumption and body mass index in adult women: an analysis of NHANES 1999–2000 and the USDA pyramid servings database. J Am Coll Nutr 27:80–87

    Article  Google Scholar 

  97. Jamshed H, Sultan FA, Iqbal R, Gilani AH (2015) Dietary almonds increase serum HDL cholesterol in coronary artery disease patients in a randomized controlled trial. J Nutr. doi:10.3945/jn.114.207944

    Google Scholar 

  98. Kingwell BA, Chapman MJ, Kontush A, Miller NE (2014) HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 13:245–264

    Google Scholar 

  99. Yu Z, Malik VS, Keum N, Hu FB, Giovannucci ED, Stampfer MJ, Willett WC, Fuchs CS, Bao Y (2016) Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr. doi:10.3945/ajcn.116.134205

    Google Scholar 

  100. Burton-Freeman B, Sesso H (2014) Whole food versus supplement: comparing the clinical evidence of tomato intake and lycopene supplementation on cardiovascular risk factors. Adv Nutr 5:457–485

    Article  CAS  Google Scholar 

  101. Sesso HD, Wang L, Ridker PM, Buring JE (2012) Tomato-based food products are related to clinically modest improvements in selected coronary biomarkers in women. J Nutr 142:326–333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saad, B., Zaid, H., Shanak, S., Kadan, S. (2017). Prevention and Treatment of Obesity-Related Diseases by Diet and Medicinal Plants. In: Anti-diabetes and Anti-obesity Medicinal Plants and Phytochemicals. Springer, Cham. https://doi.org/10.1007/978-3-319-54102-0_4

Download citation

Publish with us

Policies and ethics