Skip to main content
Book cover

Macrophages pp 365–376Cite as

Macrophages and RhoA Pathway in Transplanted Organs

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

RhoA is a small GTPase that, via its downstream effectors, regulates a variety of cell functions such as cytokinesis, cell migration, vesicular trafficking, and phagocytosis. As such the RhoA pathway is also pivotal for proper functioning of immune cells including macrophages. By controlling actin cytoskeleton organization, RhoA pathway modulates macrophage’s polarity and basic functions: phagocytosis, migration, and extracellular matrix degradation. Numerous studies indicate that macrophages are very important effectors contributing to acute and chronic rejection of transplanted organs. In this review we discuss the role of RhoA pathway in governance of macrophage’s functions in terms of transplanted organs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  CAS  PubMed  Google Scholar 

  • Barlic J, Zhang Y, Foley JF, Murphy PM (2006) Oxidized lipid-driven chemokine receptor switch, CCR2 to CX3CR1, mediates adhesion of human macrophages to coronary artery smooth muscle cells through a peroxisome proliferator-activated receptor gamma-dependent pathway. Circulation 114:807–819

    Article  CAS  PubMed  Google Scholar 

  • Berdeaux RL, Diaz B, Kim L, Martin GS (2004) Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function. J Cell Biol 166:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawe HR, Minamide LS, Bamburg JR, Cramer LP (2003) ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol 13:252–257

    Article  CAS  PubMed  Google Scholar 

  • El Azzouzi K, Wiesner C, Linder S (2016) Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence. J Cell Biol 213:109–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epelman S, Lavune KJ, Randolph GJ (2014) Origin and functions of tissue macrophages. Immunity 41:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes AL, Millis L, Vapenik J, Sigola L (2014) Lipopolysaccharide-mediated enhancement of zymosan phagocytosis by RAW 264.7 macrophages is independent of opsonins, laminarin, mannan, and complement receptor 3. J Surg Res 189:304–312

    Article  CAS  PubMed  Google Scholar 

  • Grandaliano G, Gesualdo L, Ranieri E, Monno R, Stallone G, Schena FP (1997) Monocyte chemotactic peptide-1 expression and monocyte infiltration in acute renal transplant rejection. Transplantation 63:414–420

    Article  CAS  PubMed  Google Scholar 

  • Grau V, Gemsa D, Steiniger B, Garn H (2000) Chemokine expression during acute rejection of rat kidneys. Scand J Immunol 51:435–540

    Article  CAS  PubMed  Google Scholar 

  • Gray M, Botelho RJ (2017) Phagocytosis: hungry, hungry cells. Methods Mol Biol 1519:1–16

    Article  PubMed  Google Scholar 

  • Julius BK, Attenhofer Jost CH, Sutsch G, Brunner HP, Kuenzli A, Vogt PR et al (2000) Incidence, progression and functional significance of cardiac allograft vasculopathy after heart transplantation. Transplantation 69:847–853

    Article  CAS  PubMed  Google Scholar 

  • Kim JG, Moon MY, Kim HJ, Li Y, Song DK, Kim JS, Lee JY, Kim J, Kim SC, Park JB (2012) Ras-related GTPases Rap1 and RhoA collectively induce the phagocytosis of serum-opsonized zymosan particles in macrophages. J Biol Chem 287:5145–5155

    Article  CAS  PubMed  Google Scholar 

  • Kitchens WH, Chase CM, Uehara S, Cornell LD, Colvin RB, Russell PS, Madsen JC (2007) Macrophage depletion suppresses cardiac allograft vasculopathy in mice. Am J Transplant 7:2675–2682

    Article  CAS  PubMed  Google Scholar 

  • Kloc M, Ghobrial RM (2014) Chronic allograft rejection: a significant hurdle to transplant success. Burns & Trauma 2:3–10

    Article  Google Scholar 

  • Kloc M, Li XC, Ghobrial RM (2014) RhoA cytoskeletal pathway to transplantation. J Immunol Clin Res 2:10–12

    Google Scholar 

  • Lamb KE, Lodhi S, Meier-Kriesche HU (2011) Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant 11:450–462

    Article  CAS  PubMed  Google Scholar 

  • Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD (2008) The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen W, Minze LJ, Kubiak JZ, Li XC, Ghobrial RM, Kloc M (2016a) Dissonant response of M0/M2 and M1 bone-marrow-derived macrophages to RhoA pathway interference. Cell Tissue Res Sep 15. [Epub ahead of print]

    Google Scholar 

  • Liu Y, Chen W, Wu C, Minze LJ, Kubiak JZ, Li XC, Kloc M, Ghobrial RM (2016b) Macrophage/monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts. J Heart Lung Transplant Aug 20. pii:S1053–2498(16)30292–3. [Epub ahead of print]

    Google Scholar 

  • Liu Y, Kloc M, Li XC (2016c) Macrophages as effectors of Acute and Chronic allograft injury. Curr Transpl Rep 3:303

    Article  PubMed  Google Scholar 

  • Liu Y, Tejpal N, You J, Li XC, Ghobrial RM, Kloc M (2016d) ROCK inhibition impedes macrophage polarity and functions. Cell Immunol 300:54–62. 7

    Google Scholar 

  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898

    Article  CAS  PubMed  Google Scholar 

  • Mannon RB (2012) Macrophages: contributors to allograft dysfunction, repair or innocent bystanders? Curr Opin Organ Transplant 17:20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meddens MB, Pandzic E, Slotman JA, Guillet D, Joosten B, Mennens S, Paardekooper LM, Houtsmuller AB, van den Dries K, Wiseman PW, Cambi A (2016) Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nat Commun 7:13127. [Epub ahead of print]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naj X, Linder S (2016) Actin-dependent regulation of borrelia burgdorferi phagocytosis by macrophages. Curr Top Microbiol Immunol. Oct 16. [Epub ahead of print]

    Google Scholar 

  • Nasr M, Sigdel T, Sarwal M (2016) Advances in diagnostics for transplant rejection. Expert Rev Mol Diagn 16:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Ohki S, Iizuka K, Ishikawa S, Kano M, Dobashi K, Yoshii A, Shimizu Y, Mori M, Morishita Y (2001) A highly selective inhibitor of Rho-associated coiled-coil forming protein kinase, Y-27632, prolongs cardiac allograft survival of the BALB/c-to-C3H/He mouse model. J Heart Lung Transplant 20:956–963

    Article  CAS  PubMed  Google Scholar 

  • Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM (2002) Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcgammaR, phagocytosis. Curr Biol 12:1413–1418

    Article  CAS  PubMed  Google Scholar 

  • Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456

    Article  CAS  PubMed  Google Scholar 

  • Rugtveit J, Scott H, Halstensen TS, Norstein J, Brandtzaeg P (1996) Expression of the L1 antigen (calprotectin) by tissue macrophages reflects recent recruitment from peripheral blood rather than upregulation of local synthesis: implications for rejection diagnosis in formalin-fixed kidney specimens. J Pathol 180:194–199

    Article  CAS  PubMed  Google Scholar 

  • Sa H, Leal R, Rosa MS (2016) Renal transplant immunology in the last 20 years: a revolution towards graft and patient survival improvement. Int Rev Immunol 28:1–29. [Epub ahead of print]

    Article  Google Scholar 

  • Salehi S, Reed EF (2015) The divergent roles of macrophages in solid organ transplantation. Curr Opin Organ Transplant 20:446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnoor M, Cullen P, Lorkowski J, Stolle K, Robenek H, Troyer D, Rauterberg J, Lorkowski S (2008) Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J Immunol 180:5707–5719

    Article  CAS  PubMed  Google Scholar 

  • Skaro AI, Liwski RS, Johnson P, Legare J-F, Lee TDG, Hirsch GM (2002) Donor versus recipient: Neointimal cell origin in allograft vascular disease. Graft 5:390–398

    Article  CAS  Google Scholar 

  • Snawder B, Shimizu T, McGrath M, Najafian N, Yeung M (2013) Blockade of phagocytosis accelerates cardiac allograft rejection. Meeting: 2013 American Transplant Congress, Abstract number 516

    Google Scholar 

  • Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP (2000) Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 269:652–659

    Article  CAS  PubMed  Google Scholar 

  • Stow JL, Condon ND (2016) The cell surface environment for pathogen recognition and entry. Clin Transl Immunology 5(4):e71

    Article  PubMed  PubMed Central  Google Scholar 

  • Syrjala SO, Nykanen AI, Tuuminen R, Raissadati A, Keranen MA, Arnaudova R, Krebs R, Koh GY, Alitalo K, Lemstrom KB (2015) Donor heart treatment with COMP-Ang1 limits ischemia-reperfusion injury and rejection of cardiac allografts. Am J Transplant 15:2075–2084

    Article  CAS  PubMed  Google Scholar 

  • Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tharaux P-L, Bukoski RC, Rocha PN, Crowley SD, Ruiz P, Nataraj C, Howell DN, Kaibuchi K, Spurney RF, Coffman TM (2003) Rho kinase promotes alloimmune responses by regulating the proliferation and structure of T cells. J Immunol 171:96–105

    Article  CAS  PubMed  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    Article  CAS  PubMed  Google Scholar 

  • Varon C, Tatin F, Moreau V, Van Obberghen-Schilling E, Fernandez-Sauze S, Reuzeau E, Kramer I, Génot E (2006) Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells. Mol Cell Biol 26:3582–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthylake RA, Burridge K (2003) RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem 278:13578–13584

    Article  CAS  PubMed  Google Scholar 

  • Worthylake RA, Lemoine S, Watson JM, Burridge K (2001) RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154:147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, You J, Sidhu J, Tejpal N, Ganachari M, Skelton TS, Kloc M, Li XC, Ghobrial RM (2013) Abrogation of chronic rejection in rat model system involves modulation of the mTORC1 and mTORC2 pathways. Transplantation 96(9):782–790

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Kloc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, Y., Kubiak, J.Z., Li, X.C., Ghobrial, R.M., Kloc, M. (2017). Macrophages and RhoA Pathway in Transplanted Organs. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_15

Download citation

Publish with us

Policies and ethics