Skip to main content

Macrophages and Their Contribution to the Development of Atherosclerosis

  • Chapter
  • First Online:
Macrophages

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

Atherosclerosis can be regarded as chronic inflammatory disease driven by lipid accumulation in the arterial wall. Macrophages play a key role in the development of local inflammatory response and atherosclerotic lesion growth. Atherosclerotic plaque is a complex microenvironment, in which different subsets of macrophages coexist executing distinct, although in some cases overlapping functions. According to the classical simplified nomenclature, lesion macrophages can belong to pro-inflammatory or anti-inflammatory or alternatively activated types. While the former promote the inflammatory response and participate in lipid accumulation, the latter are responsible for the inflammation resolution and plaque stabilisation. Atherosclerotic lesion dynamics depends therefore on the balance between these macrophages populations. The diverse functions of macrophages make them an attractive therapeutic target for the development of novel anti-atherosclerotic treatments. In this chapter, we discuss different types of macrophages and their roles in atherosclerotic lesion dynamics and describe the results of several experiments studying macrophage polarisation in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae YS, Lee JH, Choi SH, Kim S, Almazan F, Witztum JL, Miller YI (2009) Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4- and spleen tyrosine kinase-dependent activation of nadph oxidase 2. Circ Res 104:210–218, 221p following 218

    Google Scholar 

  • Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory cd14+cd16+dr++ monocytes are a major source of tnf. J Immunol 168:3536–3542

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte susbets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  • Bobryshev YV (1983) Morpho-functional characterization of the endothelium of the aorta of rabbits at experimental hypercholesterolemia. Thesis of Candidate of Science. Leningrad, USSR, 312p

    Google Scholar 

  • Bobryshev YV (2006) Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37:208–222

    Article  CAS  PubMed  Google Scholar 

  • Bobryshev YV, Shchelkunova TA, Morozov IA, Rubtsov PM, Sobenin IA, Orekhov AN, Smirnov AN (2013) Changes of lysosomes in the earliest stages of the development of atherosclerosis. J Cell Mol Med 17:626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonacci G, Schopfer FJ, Batthyany CI, Rudolph TK, Rudolph V, Khoo NK, Kelley EE, Freeman BA (2011) Electrophilic fatty acids regulate matrix metalloproteinase activity and expression. J Biol Chem 286:16074–16081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) Ppar gamma activation primes human monocytes into alternative m2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143

    Article  CAS  PubMed  Google Scholar 

  • Boyanovsky BB, Li X, Shridas P, Sunkara M, Morris AJ, Webb NR (2010) Bioactive products generated by group v spla(2) hydrolysis of ldl activate macrophages to secrete pro-inflammatory cytokines. Cytokine 50:50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle JJ, Johns M, Kampfer T, Nguyen AT, Schaer DJ, Mason JC, Haskard DO (2012) Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 110:20–33

    Article  CAS  PubMed  Google Scholar 

  • Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholseterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    Article  CAS  PubMed  Google Scholar 

  • Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128

    Article  Google Scholar 

  • Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, Sebti Y, Derudas B, Mayi T, Bories G, Tailleux A, Haulon S, Zawadzki C, Jude B, Staels B (2011) Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the ppargamma and lxralpha pathways. Circ Res 108:985–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chistiakov DA, Bobryshev YV, Nikiforov NG, Elizova NV, Sobenin IA, Orekhov AN (2015) Macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol 184:436–445

    Article  PubMed  Google Scholar 

  • Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, Takigami M, Kondo T, Atsumi T (2013) The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 22:910–918

    Article  PubMed  Google Scholar 

  • Choi SH, Harkewitz R, Lee JH, Boullier A, Almazan F, Li AC, Witzum JL, Bae YS, Miller YI (2009) Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 104:1355–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107:255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z (2008) Combined inhibition of ccl2, cx3cr1, and ccr5 abrogates ly6c(hi) and ly6c(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C, Jais JP, D’Cruz D, Casanova JL, Trouillet C, Geissmann F (2010) Human cd14dim monocytes patrol and sense nucleic acids and viruses via tlr7 and tlr8 receptors. Immunity 33:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cybulsky MI, Cheong C, Robbins CS (2016) Macrophages and dendritic cells—partners in atherogenesis. Circ Res 118:637–652

    Article  CAS  PubMed  Google Scholar 

  • da Silva RF, Lappalainen J, Lee-Rueckert M, Kovanen PT (2016) Conversion of human M-SCF macrophages into foam cells reduces their proinflammatory response to classical M1-polarizing activation. Atherosclerosis 248:170–178

    Article  PubMed  Google Scholar 

  • de Gaetano M, Crean D, Barry M, Belton O (2016) M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol 7:275

    Article  PubMed  PubMed Central  Google Scholar 

  • De Paoli F, Staels B, Chinetti-Gbaguidi G (2014) Macrophage phenotypes and their modulation in atherosclerosis. Circ J 78:1775–1781

    Article  CAS  PubMed  Google Scholar 

  • Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erbel C, Tyka M, Helmes CM, Akhavanpoor M, Rupp G, Domschke G, Linden F, Wolf A, Doesch A, Lasitschka F, Katus HA, Gleissner CA (2015) CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo. Innate Immun 21:255–265

    Article  CAS  PubMed  Google Scholar 

  • Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, Rayner K, Moore K, Garabedian M, Fisher EA (2011) Hdl promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci U S A 108:7166–7171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S, Leibovich SJ (2013) The adenosine-dependent angiogenic switch of macrophages to an m2-like phenotype is independent of interleukin-4 receptor alpha (il-4ralpha) signaling. Inflammation 36:921–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59:166–177

    Article  CAS  PubMed  Google Scholar 

  • Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27:2292–2301

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  PubMed  Google Scholar 

  • Getz GS, Reardon CA (2015) Atherogenic lipids and macrophage subsets. Curr Opin Lipidol 26:357–361

    Article  CAS  PubMed  Google Scholar 

  • Gimbrone MA, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404

    Article  CAS  PubMed  Google Scholar 

  • Hägg DA, Olson FJ, Kjelldahl J, Jernås M, Thelle DS, Carlsson LM, Fagerberg B, Svensson PA (2009) Expression of chemokine (C-C motif) ligand 18 in human macrophages and atherosclerotic plaques. Atherosclerosis 204:e15–e20

    Article  PubMed  Google Scholar 

  • Hansson GK, Libby P, Tabas I (2015) Inflammation and plaque vulnerability. J Intern Med 278:483–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Li W, Wang R, Zhang F, Chi Y, Wang D, Liu Z, Zhang Y, Matsuura E, Liu Q (2010) 7-ketocholesteryl-9-carboxynonanoate induced nuclear factor-kappa b activation in j774a.1 macrophages. Life Sci 87:651–657

    Article  CAS  PubMed  Google Scholar 

  • Huber J, Boechzelt H, Karten B, Surboeck M, Bochkov VN, Binder BR, Sattler W, Leitinger N (2002) Oxidized cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway. Arterioscler Thromb Vasc Biol 22:581–586

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama J, Taguchi R, Yamamoto A, Murakami K (2010) Palmitic acid enhances lectin-like oxidized ldl receptor (lox-1) expression and promotes uptake of oxidized ldl in macrophage cells. Atherosclerosis 209:118–124

    Article  CAS  PubMed  Google Scholar 

  • Jedidi I, Couturier M, Therond P, Gardes-Albert M, Legrand A, Barouki R, Bonnefont-Rousselot D, Aggerbeck M (2006) Cholesteryl ester hydroperoxides increase macrophage cd36 gene expression via pparalpha. Biochem Biophys Res Commun 351:733–738

    Article  CAS  PubMed  Google Scholar 

  • Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khavinson VK, Lin’kova NS, Evlashkina EV, Durnova AO, Kozlov KL, Gutop OE (2014) Molecular aspects of anti-atherosclerotic effects of short peptides. Bull Exp Biol Med 158:159–163

    Article  CAS  PubMed  Google Scholar 

  • Khoo NK, Freeman BA (2010) Electrophilic nitro-fatty acids: anti-inflammatory mediators in the vascular compartment. Curr Opin Pharmacol 10:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kockx MM, Cromheeke KM, Knaapen MW, Bosmans JM, De Meyer GR, Herman AG, Bult H (2003) Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol 23:440–446

    Article  CAS  PubMed  Google Scholar 

  • Krauss RM (2010) Lipoprotein subfractions and cardiovascular disease risk. Curr Opin Lipidol 21:305–311

    Article  CAS  PubMed  Google Scholar 

  • Kruth HS (2011) Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprtotein particles. Curr Opin Lipidol 22:386–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulesh AA, Shestakov VV (2016) Post-stroke cognitive impairment and the possibility of treatment with cellex. Zh Nevrol Psikhiatr Im S S Korsakova 116:38–42

    Article  CAS  PubMed  Google Scholar 

  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma'ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonarduzzi G, Gargiulo S, Gamba P, Perrelli MG, Castellano I, Sapino A, Sottero B, Poli G (2010) Molecular signaling operated by a diet-compatible mixture of oxysterols in up-regulating cd36 receptor in cd68 positive cells. Mol Nutr Food Res 54(Suppl 1):S31–S41

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA, Tabas I (2005) Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 280:21763–21772

    Article  CAS  PubMed  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  • Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368:2004–2013

    Article  CAS  PubMed  Google Scholar 

  • Lim WS, Timmins JM, Seimon TA, Sadler A, Kolodgie FD, Virmani R, Tabas I (2008) Signal transducer and activator of transcription-1 is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117:940–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2015) The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Rev Clin Immunol 11:5–13

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  • Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L (2008) Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J 22:3595–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis; beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711

    Article  CAS  PubMed  Google Scholar 

  • Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagornev VA, Popov AV, Pleskov VM, Bobryshev IV (1985) Ultrastructural characteristics of macrophage transformation in foam cells in in vitro experiments. Biull Eksp Biol Med 99:617–619

    Article  CAS  PubMed  Google Scholar 

  • Nagornev VA, Bobryshev IV, Ivanovskiĭ IV, Bogachev IV (1991) Role of monocytes-macrophages in atherogenesis. Arkh Patol 53:23–29

    CAS  PubMed  Google Scholar 

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  CAS  PubMed  Google Scholar 

  • Novoselov VV, Sazonova MA, Ivanova EA, Orekhov AN (2015) Study of the activated macrophage transcriptome. Exp Mol Pathol 99:575–580

    Article  CAS  PubMed  Google Scholar 

  • Orekhov AN, Andreeva ER, Andrianova IV, Bobryshev YV (2010) Peculiarities of cell composition and cell proliferation in different type atherosclerotic lesions in carotid and coronary arteries. Atherosclerosis 212:436–443

    Article  CAS  PubMed  Google Scholar 

  • Orekhov AN, Sobenin IA, Korneev NV, Kirichenko TV, Myasoedova VA, Melnichenko AA, Balcells M, Edelman ER, Bobryshev YV (2013) Anti-atherosclerotic therapy based on botanicals. Recent Pat Cardiovasc Drug Discov 8:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orekhov AN, Bobryshev YV, Chistiakov DA (2014) The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res 103:438–451

    Article  CAS  PubMed  Google Scholar 

  • Orekhov AN, Sobenin IA, Gavrilin MA, Gratchev A, Kotyashova SY, Nikiforov NG, Kzhyshkowska J (2015) Macrophages in immunopathology of atherosclerosis: a target for diagnostics and therapy. Curr Pharm Des 21:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  CAS  PubMed  Google Scholar 

  • Rader DJ (2006) Molecular regulation of hdl metabolism and function: implications for novel therapies. J Clin Invest 116:3090–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randolph GJ (2014) Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res 114:1757–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  • Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A (2016) Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med 4:256

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanson M, Distel E, Fisher EA (2013) Hdl induces the expression of the m2 macrophage markers arginase 1 and fizz-1 in a stat6-dependent process. PLoS One 8:e74676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J et al (2010) Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions. J Biol Chem 285:12321–12333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seimon T, Tabas I (2009) Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 50(Suppl):S382–S387

    PubMed  PubMed Central  Google Scholar 

  • Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 92:8264–8268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobenin IA, Salonen JT, Zhelankin AV, Melnichenko AA, Kaikkonen J, Bobryshev YV, Orekhov AN (2014) Low density lipoprotein-containing circulating immune complexes: role in atherosclerosis and diagnostic value. Biomed Res Int 2014:205697

    PubMed  PubMed Central  Google Scholar 

  • Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225:461–468

    Article  PubMed  Google Scholar 

  • Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ (2007) Ly-6chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swirski FK, Weissleder R, Pittet MJ (2009) Heterogeneous in vivo behavior of monocyte subsets in atherosclerosis. Arterioscler Thromb Vasc Biol 29:1424–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tall AR, Yvan-Charvet L (2015) Cholesterol, inflammation and innate immunity. Nat Rev Immunol 15:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ter-Grigoryan V, Panosyan V, Panossian A, Wikman G (2003) Comparative evaluation of the efficacy and safety of multiple doses of Cardiohealth in comparison with Renitec in patients with mild to moderate hypertension. In 3rd International symposium on natural drugs, pp 223–226

    Google Scholar 

  • Tertov VV, Kaplun VV, Sobenin IA, Orekhov AN (1998) Low-density lipoprotein modification occurring in human plasma possible mechanism of in vivo lipoprotein desialylation as a primary step of atherogenic modification. Atherosclerosis 138:183–195

    Article  CAS  PubMed  Google Scholar 

  • Torzewski M, Lackner KJ (2006) Initiation and progression of atherosclerosis—enzymatic or oxidative modification of low-density lipoprotein? Clin Chem Lab Med 44:1389–1394

    Article  CAS  PubMed  Google Scholar 

  • Torzewski M, Suriyaphol P, Paprotka K, Ochsenhirt V, Schmitt A, Han SR, Husmann M, Gerl VB, Bhakdi S, Lackner KJ (2004) Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis. Arterioscler Thromb Vasc Biol 24:2130–2136

    Article  CAS  PubMed  Google Scholar 

  • van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435

    Article  PubMed  PubMed Central  Google Scholar 

  • van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF (2011) Oxidized ldl enhances pro-inflammatory responses of alternatively activated m2 macrophages: a crucial role for kruppel-like factor 2. Atherosclerosis 214:345–349

    Article  PubMed  Google Scholar 

  • Younis N, Sharma R, Soran H, Charlton-Menys V, Elseweidy M, Durrington PN (2008) Glycation as an atherogenuc modification of LDL. Curr Opin Lipidol 19:552

    Article  Google Scholar 

  • Yvan-Charvet L, Pagler T, Gautier EL, Avagyan S, Siry RL, Han S, Welch CL, Wang N, Randolph GJ, Snoeck HW, Tall AR (2010) Atp-binding cassette transporters and hdl suppress hematopoietic stem cell proliferation. Science 328:1689–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler-Heitbrock L (2007) The cd14+ cd16+ blood monocytes: Their role in infection and inflammation. J Leukoc Biol 81:584–592

    Article  CAS  PubMed  Google Scholar 

  • Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80

    Article  CAS  PubMed  Google Scholar 

  • Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires m2c polarization and mertk induction. J Immunol 189:3508–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant # 15-15-10022), Russian Federation. The authors wish to thank Dr. Ekaterina A. Ivanova, Katholieke Universiteit Leuven, Belgium, for the help with the preparation of the manuscript.

Conflict of Interest Disclosure

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri V. Bobryshev .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Information about Allikor, SkQ1, Vezugen, Cellex and CardioHealth

1.1.1 Allicor

Manufacturer: Inat-Pharma (Russia

Composition: 1 tablet contains 300 mg of garlic powder.

Pharmacological effects: hypocholesterolaemic, antiagregatine, fibrinolytic, hypotensive. Reduces cholesterol and triglycerides in the plasma for hyperlipidaemia, slows the development of atherosclerosis, promotes the resorption of existing plaques, reduces blood sugar and blood pressure, inhibits platelet aggregation, normalises the increased blood clotting and promotes lysis of fresh thrombus.

Indications: atherosclerosis, hypertension, myocardial period, diabetes, migraine, impotence, decreased immunity, pregnancy; prevention of myocardial infarction and stroke; postoperative complications in patients with vascular disease, flu and colds.

Contraindications: Hypersensitivity to the drug.

Side effects: None known.

1.1.2 SkQ1

Manufacturer: Lomonosov Moscow State University (Russia)

Composition: SkQ1 is dissolved in 50% aqueous propylene glycol. The three most important segments of the molecule SkQ1 are Plastohinol, a powerful natural antioxidant carrying electrons from the chloroplasts of plants; C10, transports SkQ1 molecule in the cell membrane; Triphenylphosphonium, positively charged group delivering the components in the mitochondria.

Pharmacological effects: SkQ1 blocks and reduces the amount of free radicals formed by cells and thus prevents apoptosis-induced mitochondrial reactive oxygen species.

Indications: SkQ1 part of the eyedrops Vizomitin (Antioxidant, keratoprotektornoe agent for the treatment of early age-related cataract and the syndrome of “dry eye”), as well as part of the MitoVitan serum

Contraindications: Hypersensitivity to the drug.

Side effects: Allergic reactions.

1.1.3 Vezugen

Producer: JSC “pharm” (Russia)

Composition: peptide complex AC-2 (lysine, glutamic acid, aspartic acid). Other ingredients: microcrystalline cellulose, sugar, beet sugar, lactose, starch, Tween-80.

Pharmacological effects: Peptide complex AC-2 has directed tissue-specific effects on the vascular wall. Vezugen promotes normalisation of the functional state of vessels, regulates metabolism in the cells of the vascular wall, improves the condition of the vessel walls and normalises lipid metabolism.

Indications: general and cerebral arteriosclerosis; hypertension; coronary heart disease; endarteritis; of varicose veins of the lower extremities; systemic and local microcirculation disorders; vascular encephalopathy; hypercholesterolaemia; vascular dystonia; psycho-emotional stress; effects of acute stroke; the impact of various factors on the extreme. Vezugen also used for the prevention of vascular disease in the elderly.

Contraindications: individual intolerance to the components of dietary supplements, pregnancy, breastfeeding.

Side effects: None known.

1.1.4 Cellex

Producer: JSC “Pharm-Sintez” (Russia)

Composition in 1 ml: active substance: polypeptides from hog brain of embryos based on 0.9–2.4 mg of total protein (nominal total protein content—1.65 mg per 1 ml of substance); excipients: 3.75 mg of glycine, 0.1 M disodium hydrogen phosphate solution, 5.85 mg of sodium chloride, 0.005 mg of Polysorbate 80, purified water.

Pharmacological effects: The presence of tissue-specific signalling proteins and polypeptides leads to neuroreparation. The drug activates the secondary neuroprotection by stimulating synaptogenesis processes of autophagy recovery signals. Tissue-specific and systemic restorative effect was found as well as the restoration of the regenerative and reparative potential of the brain cells reducing the number of damaged cells and the severity of perifocal oedema in the penumbra, the restoration of microcirculation and perfusion. Recovers and regulates stimulation of different compartments of central nervous system. The therapeutic effect usually develops within 3–5 days after the start of administration.

Indications: Cerebrovascular diseases.

Contraindications: Epilepsy; Manic psychosis; age of 18 years (due to the lack of clinical data).

Side effects: allergic reactions.

1.1.5 CardioHealth

CardioHealth is a plant complex from the leaves of the European Olive, standardised to oleuropein content (4 mg), Potentilla goose and Andrographis paniculata. CardioHealth has antihypertensive and moderate hypoglycaemic and hypolipidaemic effects.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bobryshev, Y.V., Nikiforov, N.G., Elizova, N.V., Orekhov, A.N. (2017). Macrophages and Their Contribution to the Development of Atherosclerosis. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_11

Download citation

Publish with us

Policies and ethics