Skip to main content

Coping with Dynamical Structures for Interdisciplinary Applications of Membrane Computing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10105))

Abstract

Biological information processing and maintenance of life mainly utilise dynamical structures at different levels from a nanoscopic up to a macroscopic scale. Providing a high degree of reliability, reproducibility, unambiguousness, and addressability, underlying compositional processes appear as ideal candidates to perform computational tasks in a discretised manner. In this essay, we consider four levels in which dynamical structures enable an efficient handling with information: (1) the molecular level, (2) the level of reaction network modules, (3) the level of membranes, and (4) the level of higher-order organisms and populations. All of them have in common the capability of controlled memory-based state transitions and hence dedicated systems’s configurations encoding behavioural patterns. Due to its discrete algebraic nature, membrane systems represent advantageous frameworks in order to formalise corresponding activities. This in turn paves the way towards efficient tools inspired by nature with manifold smart applications in engineering, computer science, and systems biology. We illustrate membrane system’s abilities, benefits, and progress for coping with dynamical structures from an integrative perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aschoff, J.: Circadian rhythms in man. a self-sustained oscillator with an inherent frequency underlies human 24-hour periodicity. Science 148, 1427–1432 (1965)

    Article  Google Scholar 

  2. Bernardini, F., Gheorghe, M., Krasnogor, N., Giavitto, J.-L.: On self-assembly in population P systems. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 46–57. Springer, Heidelberg (2005). doi:10.1007/11560319_6

    Chapter  Google Scholar 

  3. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  4. Grünert, G., Ibrahim, B., Lenser, T., Lohel, M., Hinze, T., Dittrich, P.: Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinform. 11, 307 (2010)

    Article  Google Scholar 

  5. Hinze, T., Schell, B., Schumann, M., Bodenstein, C.: Maintenance of chronobiological information by P system mediated assembly of control units for oscillatory waveforms and frequency. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 208–227. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36751-9_15

    Chapter  Google Scholar 

  6. Hinze, T., Behre, J., Bodenstein, C., Escuela, G., Grünert, G., Hofstedt, P., Sauer, P., Hayat, S., Dittrich, P.: Membrane systems and tools combining dynamical structures with reaction kinetics for applications in chronobiology. In: Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing in Systems and Synthetic Biology. ECC, vol. 7, pp. 133–173. Springer, Cham (2014). doi:10.1007/978-3-319-03191-0_5

    Chapter  Google Scholar 

  7. Hinze, T., Grützmann, K., Höckner, B., Sauer, P., Hayat, S.: Categorised counting mediated by blotting membrane systems for particle-based data mining and numerical algorithms. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 241–257. Springer, Cham (2014). doi:10.1007/978-3-319-14370-5_15

    Google Scholar 

  8. Hinze, T., Kirkici, K., Sauer, P., Sauer, P., Behre, J.: Membrane computing meets temperature: a thermoreceptor model as molecular slide rule with evolutionary potential. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 215–235. Springer, Cham (2015). doi:10.1007/978-3-319-28475-0_15

    Chapter  Google Scholar 

  9. Hinze, T., Behre, J., Kirkici, K., Sauer, P., Sauer, P., Hayat, S.: Passion to P for polymorphic processes in practice. In: Gheorghe, M., Petre, I., Perez-Jimenez, M.J., Rozenberg, G., Salomaa, A. (eds.) Multidisciplinary Creativity. Spandugino (2016)

    Google Scholar 

  10. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  11. Martin-Vide, C., Paun, G., Pazos, J., Rodriguez-Paton, A.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matsumaru, N., Lenser, T., Hinze, T., Dittrich, P.: Toward organization-oriented chemical programming: a case study with the maximal independent set problem. In: Dressler, F., Carreras, I. (eds.) Advances in Biologically Inspired Information Systems: Models, Methods, and Tools. SSCI, pp. 147–163. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes working in polynomial space. Int. J. Found. Comput. Sci. 22(1), 65–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Păun, G.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hinze, T. (2017). Coping with Dynamical Structures for Interdisciplinary Applications of Membrane Computing. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2016. Lecture Notes in Computer Science(), vol 10105. Springer, Cham. https://doi.org/10.1007/978-3-319-54072-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54072-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54071-9

  • Online ISBN: 978-3-319-54072-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics