Skip to main content

Organelle Genomes and Endosymbionts

  • Chapter
  • First Online:
Phylogenomics

Abstract

Mitochondria and chloroplasts are cell organelles which carry their own genomes. Morphological characteristics, as well as sequence comparisons, clearly support an endosymbiotic origin of these organelles. Mitochondria likely evolved from the uptake of an alphaproteobacterium by a host cell, ultimately leading to the evolution of the eukaryote cell. In contrast, the acquisition of chloroplasts happened several times convergently. Primary endosymbiosis describes the uptake of a cyanobacterium by the last common ancestor of Archaeplastida (comprising plants, green algae, red algae and some other minor taxa). Secondary endosymbiotic events due to the symbiosis of a eukaryote host with chloroplast-bearing algae evolved several times, leading to chloroplasts characterized by three or four cell membranes. Some eukaryotes lack mitochondria, but instead bear derived organelles known as mitosomes or hydrogenosomes. Organelle genomes show usually signs of their prokaryote ancestry (e.g. different genetic code than nuclear DNA) and can differ greatly in size, structure and gene content across taxa. Some sequence fragments of organelle genes became a popular choice for genetic studies, and mitochondrial and chloroplast markers are used as standard for DNA barcoding of animals and plants, respectively. Endosymbiosis is common across eukaryote taxa, and some relationships blur the distinction between organelles and symbionts. Heritable bacterial endosymbionts are broadly classified as either primary symbionts or secondary symbionts. Whereas relationships of primary symbionts are characterized by a mutual obligate relationships, secondary symbionts can be facultative mutualists and reproductive manipulators or have unknown effects on their host. Typically, endosymbiont genomes are highly streamlined, and the smallest reported genomes of all living organisms are described from primary symbionts of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407

    Article  CAS  PubMed  Google Scholar 

  • Aksoy S (2000) Tsetse – a haven for microorganisms. Parasitol Today 16:114–118

    Article  CAS  PubMed  Google Scholar 

  • Allen J (2015) Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 112:10231–10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Balmand S, Lohs C, Aksoy S, Heddi A (2013) Tissue distribution and transmission routes for the tsetse fly endosymbionts. J Invertebr Pathol 112(Suppl 1):S116–S122

    Article  PubMed  Google Scholar 

  • Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  PubMed  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernt M, Braband A, Schierwater B, Stadler PF (2013) Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 69:328–338

    Article  CAS  PubMed  Google Scholar 

  • Bodył A, Mackiewicz P, Gagat P (2012) Organelle evolution: Paulinella breaks a paradigm. Curr Biol 22:R304–R306

    Article  PubMed  CAS  Google Scholar 

  • Börner GV, Yokobori S-I, Mörl M, Dörner M, Pääbo S (1997) RNA editing in metazoan mitochondria: staying fit without sex. FEBS Lett 409:320–324

    Article  PubMed  Google Scholar 

  • Brouard J-S, Otis C, Lemieux C, Turmel M (2010) The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2:240–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A 76:1967–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003a) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci U S A 100:892–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger G, Gray MW, Forget L, Lang BF (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burger G, Gray MW, Franz Lang B (2003b) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    Article  CAS  PubMed  Google Scholar 

  • Burger G, Zhu Y, Littlejohn TG, Greenwood SJ, Schnare MN, Lang BF, Gray MW (2000) Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA. J Mol Biol 297:365–380

    Article  CAS  PubMed  Google Scholar 

  • Cameron SL, Yoshizawa K, Mizukoshi A, Whiting MF, Johnson KP (2011) Mitochondrial genome deletions and minicircles are common in lice (Insecta: Phthiraptera). BMC Genomics 12:394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith T (1983) A 6-kingdom classification and a unified phylogeny. In: Schenk HEA, Schwemmler WS (eds) Endocytobiology. II. Intracellular Space as Oligogenetic Ecosystem. Walter de Gruyter, Berlin, pp 1027–1034

    Google Scholar 

  • Cavalier-Smith T (1987) Eukaryotes with no mitochondria. Nature 326:332–333

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond Ser B Biol Sci 358:109–134

    Article  CAS  Google Scholar 

  • Cavalier-Smith T, Lee JJ (1985) Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool 32:376–379

    Article  Google Scholar 

  • Chaw S-M, Chun-Chieh Shih A, Wang D, Wu Y-W, Liu S-M, Chou T-Y (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615

    Article  CAS  PubMed  Google Scholar 

  • Christensen AC (2013) Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol Evol 5:1079–1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Møbjerg Kristensen R (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:1–10

    Article  CAS  Google Scholar 

  • Dellaporta SL, Xu A, Sagasser S, Jakob W, Moreno MA, Buss LW, Schierwater B (2006) Mitochondrial genome of Trichoplax adhaerens supports Placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci U S A 103:8751–8756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis JW, Durkin SM, Horsley Downie JE, Hamill LC, Anderson NE, MacLeod ET (2014) Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasit Vectors 7:1–11

    Article  Google Scholar 

  • Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318

    Article  CAS  PubMed  Google Scholar 

  • Dorrell RG, Howe CJ (2015) Integration of plastids with their hosts: lessons learned from dinoflagellates. Proc Natl Acad Sci USA 112(33):10247–10254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doucet-Beaupré H, Breton S, Chapman EG, Blier PU, Bogan AE, Stewart DT, Hoeh WR (2010) Mitochondrial phylogenomics of the Bivalvia (Mollusca): searching for the origin and mitogenomic correlates of doubly uniparental inheritance of mtDNA. BMC Evol Biol 10:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  CAS  PubMed  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630

    Article  CAS  PubMed  Google Scholar 

  • Ettema TJG (2016) Evolution: mitochondria in the second act. Nature 531:39–40

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Lee RW (2002) Mitochondrial genome of the colorless green alga Polytomella parva: two linear DNA Molecules with homologous inverted repeat termini. Mol Biol Evol 19:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Feagin JE, Mericle BL, Werner E, Morris M (1997) Identification of additional rRNA fragments encoded by the Plasmodium falciparum 6 kb element. Nucleic Acids Res 25:438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond Ser B Biol Sci 366:1389–1400

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Gabaldón T, Huynen MA (2007) From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol 3:e219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galtier N, Nabholz B, Glemin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    Article  CAS  PubMed  Google Scholar 

  • Gerth M, Bleidorn C (2016) Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol 2:16241

    Article  PubMed  CAS  Google Scholar 

  • Gerth M, Gansauge MT, Weigert A, Bleidorn C (2014) Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat Commun 5:5117

    Article  CAS  PubMed  Google Scholar 

  • Gerth M, Geißler A, Bleidorn C (2011) Wolbachia infections in bees (Anthophila) and possible implications for DNA barcoding. Syst Biodivers 9:319–327

    Article  Google Scholar 

  • Gibson T, Blok VC, Phillips MS, Hong G, Kumarasinghe D, Riley IT, Dowton M (2007) The mitochondrial subgenomes of the nematode Globodera pallida are mosaics: evidence of recombination in an animal mitochondrial genome. J Mol Evol 64:463–471

    Article  CAS  PubMed  Google Scholar 

  • Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320

    Article  CAS  PubMed  Google Scholar 

  • Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  CAS  PubMed  Google Scholar 

  • Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687

    Article  CAS  PubMed  Google Scholar 

  • Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray MW (2015) Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A 112:10133–10138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MW, Archibald JM (2012) Origins of mitochondria and plastids. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, Advances in photosynthesis and respiration, vol 35. Springer Science + Business Media B.V, Dordrecht, pp 1–30

    Chapter  Google Scholar 

  • Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96–S99

    Article  CAS  Google Scholar 

  • Hikosaka K, Kita K, Tanabe K (2013) Diversity of mitochondrial genome structure in the phylum Apicomplexa. Mol Biochem Parasitol 188:26–33

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Watanabe Y-I, Tsuji N, Kita K, Kishine H, Arisue N, Palacpac NMQ, Kawazu S-I, Sawai H, Horii T, Igarashi I, Tanabe K (2010) Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria. Mol Biol Evol 27:1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 365:713–727

    Article  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D-K, Little DP (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797

    Article  CAS  PubMed Central  Google Scholar 

  • Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174

    Article  CAS  PubMed  Google Scholar 

  • Huchon D, Szitenberg A, Shefer S, Ilan M, Feldstein T (2015) Mitochondrial group I and group II introns in the sponge orders Agelasida and Axinellida. BMC Evol Biol 15:278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Husnik F, Nikoh N, Koga R, Ross L, Duncan Rebecca P, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson Alex CC, von Dohlen CD, Fukatsu T, McCutcheon John P (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:1567–1578

    Article  CAS  PubMed  Google Scholar 

  • Jackson CJ, Gornik SG, Waller RF (2012) The mitochondrial genome and transcriptome of the basal dinoflagellate Hematodinium sp.: character evolution within the highly derived mitochondrial genomes of dinoflagellates. Genome Biol Evol 4:59–72

    Article  CAS  PubMed  Google Scholar 

  • Janouškovec J, Liu S-L, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ (2013) Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One 8:e59001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karnkowska A, Vacek V, Zubáčová Z, Treitli Sebastian C, Petrželková R, Eme L, Novák L, Žárský V, Barlow Lael D, Herman Emily K, Soukal P, Hroudová M, Doležal P, Stairs Courtney W, Roger Andrew J, Eliáš M, Dacks Joel B, Vlček Č, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Katz LA, Grant JR (2014) Taxon-rich phylogenomic analyses resolve the eukaryotic tree of life and reveal the power of subsampling by sites. Syst Biol 64:406–415

    Article  PubMed  CAS  Google Scholar 

  • Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV (2012) Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol 4:1–12

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (1998) A kingdom’s progress: Archezoa and the origin of eukaryotes. BioEssays 20:87–95

    Article  Google Scholar 

  • Keeling PJ (2009) Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids. In: Gogarten MB, Gogarten JP, Olendzenski LC (eds) Horizontal gene transfer, Methods in molecular biology, vol 532. Humana Press, New York, pp 501–515

    Chapter  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond Ser B Biol Sci 365:729–748

    Article  CAS  Google Scholar 

  • Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Archibald JM (2008) Organelle evolution: what’s in a name? Curr Biol 18:R345–R347

    Article  CAS  PubMed  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58

    Article  CAS  PubMed  Google Scholar 

  • Knoop V (2012) Seed plant mitochondrial genomes: complexity evolving. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, Advances in photosynthesis and respiration, vol 35. Springer Science + Business Media B.V, Dordrecht, pp 175–200

    Chapter  Google Scholar 

  • Köhler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489

    Article  PubMed  Google Scholar 

  • Kotera E, Tasaka M, Shikanai T (2005) A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330

    Article  CAS  PubMed  Google Scholar 

  • Lang BF, Burger G, O’Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    Article  CAS  PubMed  Google Scholar 

  • Lemieux C, Otis C, Turmel M (2014) Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae. BMC Evol Biol 14:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S (2015) Plant DNA barcoding: from gene to genome. Biol Rev 90:157–166

    Article  PubMed  Google Scholar 

  • Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc Lond Ser B Biol Sci 365:749–763

    Article  CAS  Google Scholar 

  • Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond Ser B Biol Sci 365:799–817

    Article  CAS  Google Scholar 

  • Liu Y, Wang B, Cui P, Li L, Xue J-Y, Yu J, Qiu Y-L (2012) The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS One 7:e35168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Madrigal S, Latorre A, Porcar M, Moya A, Gil R (2011) Complete genome sequence of «Candidatus Tremblaya princeps» strain PCVAL, an intriguing translational machine below the living-cell status. J Bacteriol 193:5587–5588

    Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer Assoc, Sunderland

    Google Scholar 

  • Mackiewicz P, Bodył A (2010) A hypothesis for import of the nuclear encoded PsaE Protein of Paulinella chromatophora (Cercozoa, Rhizaria) into its cyanobacterial endosymbionts/plastids via the endomembrane system. J Phycol 46:847–859

    Article  CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Marin B, Nowack EC, Melkonian M (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–432

    Article  CAS  PubMed  Google Scholar 

  • Martin G, Baurens F-C, Cardi C, Aury J-M, D’Hont A (2013) The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 8:e67350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon JP, Keeling PJ (2014) Endosymbiosis: protein targeting further erodes the organelle/symbiont distinction. Curr Biol 24:R654–R655

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • McInerney JO, O’Connell MJ, Pisani D (2014) The hybrid nature of the Eukaryota and a consilient view of life on earth. Nat Rev Microbiol 12:449–455

    Article  CAS  PubMed  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  • Mower JP, Sloan DB, Alverson AJ (2012) Plant mitochondrial genome diversity: the genomics revolution. In: Wendel FJ, Greilhuber J, Dolezel J, Leitch JI (eds) Plant genome diversity, Plant genomes, their residents, and their evolutionary dynamics, vol 1. Springer, Vienna, pp 123–144

    Chapter  Google Scholar 

  • Mwinyi A, Meyer A, Bleidorn C, Lieb B, Bartolomaeus T, Podsiadlowski L (2009) Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida. BMC Genomics 10:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima S-Y (2014) Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol 24:R640–R641

    Article  CAS  PubMed  Google Scholar 

  • Nosek J, Tomáška Ľ (2003) Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 44:73–84

    Article  CAS  PubMed  Google Scholar 

  • Novakova E, Hypša V, Klein J, Foottit R, Von Dohlen CD, Moran NA (2013) Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola. Mol Phylogenet Evol 68:42–54

    Article  PubMed  Google Scholar 

  • Nowack ECM (2014) Paulinella chromatophora – rethinking the transition from endosymbiont to organelle. Acta Soc Bot Pol 83:387–397

    Article  CAS  Google Scholar 

  • Nowack ECM, Grossman AR (2012) Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci U S A 109:5340–5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418

    Article  CAS  PubMed  Google Scholar 

  • Nowack ECM, Price DC, Bhattacharya D, Singer A, Melkonian M, Grossman AR (2016) Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A 113:12214–12219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pais R, Lohs C, Wu Y, Wang J, Aksoy S (2008) The obligate mutualist Wigglesworthia glossinidia Influences reproduction, digestion, and immunity processes of Its host, the Tsetse fly. Appl Environ Microbiol 74:5965–5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passamonti M, Ricci A, Milani L, Ghiselli F (2011) Mitochondrial genomes and doubly uniparental inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae). BMC Genomics 12:442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittis AA, Gabaldón T (2016) Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531:101–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609

    Article  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473

    Article  CAS  PubMed  Google Scholar 

  • Richardson AO, Rice DW, Young GJ, Alverson AJ, Palmer JD (2013) The «fossilized» mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate. BMC Biol 11:29

    Google Scholar 

  • Ruhfel B, Gitzendanner M, Soltis P, Soltis D, Burleigh J (2014) From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Saunders GW, McDevit DC (2012) Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. In: Kress JW, Erickson LD (eds) DNA barcodes: methods and protocols. Humana Press, Totowa, pp 207–222

    Chapter  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shearer TL, van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    Article  CAS  PubMed  Google Scholar 

  • Shoguchi E, Shinzato C, Hisata K, Satoh N, Mungpakdee S (2015) The large mitochondrial genome of Symbiodinium minutum reveals conserved noncoding sequences between dinoflagellates and apicomplexans. Genome Biol Evol 7:2237–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR (2012) Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 10:e1001241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sogin ML (1989) Evolution of eukaryotic microorganisms and their small subunit ribosomal RNAs. Am Zool 29:487–499

    Article  CAS  Google Scholar 

  • Strittmatter P, Soll J, Bölter B (2010) The chloroplast protein import machinery: a review. In: Economou A (ed) Protein secretion, Methods in molecular biology, vol 619. Humana Press, New York, pp 307–321

    Chapter  Google Scholar 

  • Suzuki K, Miyagishima S-Y (2010) Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses Indicate that the 19′Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729

    Article  CAS  PubMed  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    Article  CAS  PubMed  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117

    Article  PubMed  Google Scholar 

  • van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    Article  PubMed  Google Scholar 

  • Voigt O, Erpenbeck D, Wörheide G (2008) A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 9:350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 412:433–436

    Article  Google Scholar 

  • Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. BioEssays 31:237–245

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu M (2014) Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS One 9:e110685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Wu M (2015) An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 5:7949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss B, Aksoy S (2011) Microbiome influences on insect host vector competence. Trends Parasitol 27:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Zhang W, Guo LR (1995) Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc Lond B Biol Sci 261:55–63

    Article  CAS  Google Scholar 

  • Wiemers M, Fiedler K (2007) Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool 4:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yagi Y, Shiina T (2014) Recent advances in the study of chloroplast gene expression and its evolution. Front Plant Sci 5:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol 3:613–623

    Article  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bleidorn, C. (2017). Organelle Genomes and Endosymbionts. In: Phylogenomics. Springer, Cham. https://doi.org/10.1007/978-3-319-54064-1_2

Download citation

Publish with us

Policies and ethics