Skip to main content

Rare Genomic Changes

  • Chapter
  • First Online:
Phylogenomics

Abstract

Sequence-based phylogenetic analyses can be biased by different sources of errors. Rare genomic changes constitute an interesting additional phylogenetic marker to test or propose hypotheses of evolutionary relationships. In difference to amino acid or nucleotide substitutions, these characters do not evolve clocklike. Several different marker systems have been explored in their value to provide additional synapomorphies for the support of monophyletic groups. Genome-level characters used include absence/presence patterns of mobile elements, microRNAs and introns. Moreover, gene order rearrangement and changes in the genetic code have been analysed to solve phylogenetic problems. Most promising has been a type of mobile elements known as retrotransposons, as due to their copy-and-paste mechanism and their nearly neutral evolution, they are close to a perfect phylogenetic marker. Only low levels of true convergency are reported for retrotransposons; however, in case of rapid radiations, high levels of lineage sorting can become apparent. These markers were successfully used in reconstructing bird or mammalian phylogenies, even though deeper relationships with divergences beyond an age of 50 million years might be only difficult or impossible to tackle. MicroRNAs showed a bigger potential to resolve deep phylogenies. These small RNAs involved in the regulation of gene expression are highly conserved across taxa and can be found in plants and animals. Especially, deep animal phylogeny has been investigated using microRNAs. However, convergent loss seems to be more frequent than previously assumed, thereby complicating analyses, which can be alleviated by using explicit evolutionary models. The usefulness of absence/presence patterns of introns, which are typically interrupting the coding sequences in eukaryotic genomes, has been established for some phylogenetic problems. Even though intron positions across eukaryotes are conserved, high levels of intron gain and intron loss are biasing analyses. A special case of intron markers are so-called near intron pairs, which seem to be more promising as a phylogenetic character. The historically oldest genome-level character used to unravel evolutionary relationships is the order of genes in the genome. Genes are coded on both strands of the DNA molecule, and several mechanisms (inversion, transposition, tandem duplication random loss, translocation, fusion, fission) can result in the rearrangement of the ancestral order. Most phylogenetic studies concentrated on gene order changes in unichromosomal organellar genomes, which due to their limited size were easier to access, even without next-generation sequencing. Gene order can be analysed either using distance methods or by coding all adjacent pairs into a character matrix to be analysed by parsimony or likelihood methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abascal F, Posada D, Zardoya R (2012) The evolution of the mitochondrial genetic code in arthropods revisited. Mitochondr DNA 23:84–91

    Article  CAS  Google Scholar 

  • Abascal F, Zardoya R, Posada D (2006) GenDecoder: genetic code prediction for metazoan mitochondria. Nucleic Acids Res 34:W389–W393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguado MT, Glasby CJ, Schroeder PC, Weigert A, Bleidorn C (2015) The making of a branching annelid: an analysis of complete mitochondrial genome and ribosomal data of Ramisyllis multicaudata. Sci Rep 5:12072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:189–194

    Article  CAS  PubMed  Google Scholar 

  • Bernt M, Braband A, Schierwater B, Stadler PF (2013) Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 69:328–338

    Article  CAS  PubMed  Google Scholar 

  • Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF, Middendorf M (2007) CREx: inferring genomic rearrangements based on common intervals. Bioinformatics 23:2957–2958

    Article  CAS  PubMed  Google Scholar 

  • Blanchette M, Bourque G, Sankoff D (1997) Breakpoint phylogenies. Genome Inform Ser Workshop Genome Inform 8:25–34

    CAS  PubMed  Google Scholar 

  • Bleidorn C, Eeckhaut I, Podsiadlowski L, Schult N, McHugh D, Halanych KM, Milinkovitch MC, Tiedemann R (2007) Mitochondrial genome and nuclear sequence data support Myzostomida as part of the annelid radiation. Mol Biol Evol 24:1690–1701

    Article  CAS  PubMed  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21:439–446

    Article  PubMed  Google Scholar 

  • Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674

    Article  CAS  PubMed  Google Scholar 

  • Boore JL, Collins T, Stanton D, Daehler L, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165

    Article  CAS  PubMed  Google Scholar 

  • Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668

    Article  CAS  PubMed  Google Scholar 

  • Bourque G, Pevzner PA (2002) Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Res 12:26–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci U S A 108:15920–15924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmel L, Rogozin IB, Wolf YI, Koonin EV (2007) Evolutionarily conserved genes preferentially accumulate introns. Genome Res 17:1045–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castresana J, Feldmaier-Fuchs G, S-i Y, Satoh N, Pääbo S (1998) The mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 150:1115–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D (2010) Ancient animal microRNAs and the evolution of tissue identity. Nature 463:1084–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churakov G, Grundmann N, Kuritzin A, Brosius J, MakaÅ‚owski W, Schmitz J (2010) A novel web-based TinT application and the chronology of the Primate Alu retroposon activity. BMC Evol Biol 10:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AM, Goldstein LD, Tevlin M, Tavare S, Shaham S, Miska EA (2010) The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res 38:3780–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb M (2015) Life’s greatest secret: the race to crack the genetic code. Basic Books, London

    Google Scholar 

  • Cosner ME, Raubeson LA, Jansen RK (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol 4:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Deininger P (2011) Alu elements: know the SINEs. Genome Biol 12:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dollo L (1893) Les lois de l’ evolution. Bull Belg Soc Geol, Palaeontol Hydrol 8:164–166

    Google Scholar 

  • Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Springer US, Boston, pp 14–35

    Chapter  Google Scholar 

  • Dowton M, Castro LR, Austin AD (2002) Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology’. Invertebr Syst 16:345–356

    Article  Google Scholar 

  • Dutilh BE, Jurgelenaite R, Szklarczyk R, van Hijum SAFT, Harhangi HR, Schmid M, de Wild B, Françoijs KJ, Stunnenberg HG, Strous M, Jetten MSM, Op den Camp HJM, Huynen MA (2011) FACIL: fast and accurate genetic code inference and logo. Bioinformatics 27:1929–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris JS (1977) Phylogenetic analysis under Dollo’s law. Syst Zool 26:77–88

    Article  Google Scholar 

  • Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167

    Article  CAS  PubMed  Google Scholar 

  • Fu XH, Adamski M, Thompson EM (2008) Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 25:1067–1080

    Article  CAS  PubMed  Google Scholar 

  • Giordano J, Ge Y, Gelfand Y, Abrusán G, Benson G, Warburton PE (2007) Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput Biol 3:e137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall BK (2003) Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biol Rev 78:409–433

    Article  PubMed  Google Scholar 

  • Hallström BM, Janke A (2010) Mammalian evolution may not be strictly bifurcating. Mol Biol Evol 27:2804–2816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han K-L, Braun EL, Kimball RT, Reddy S, Bowie RCK, Braun MJ, Chojnowski JL, Hackett SJ, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2011) Are transposable element insertions homoplasy free?: An examination using the Avian tree of life. Syst Biol 60:375–386

    Article  PubMed  Google Scholar 

  • Hannenhalli S, Pevzner PA (1999) Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J ACM 46:1–27

    Article  Google Scholar 

  • Heimberg AM, Cowper-Sallari R, Semon M, Donoghue PCJ, Peterson KJ (2010) microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci U S A 107:19379–19383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A 105:2946–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helm C, Bernhart SH, Siederdissen CHZ, Nickel B, Bleidorn C (2012) Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. Mol Phylogenet Evol 64:198–203

    Article  CAS  PubMed  Google Scholar 

  • Hennig W (1965) Phylogenetic systematics. Annu Rev Entomol 10:97–116

    Article  Google Scholar 

  • Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, Students Bioinformatics Computer L (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hilker R, Sickinger C, Pedersen CNS, Stoye J (2012) UniMoG—a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics 28:2509–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu F, Lin Y, Tang J (2014) MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinformatics 15:354

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CRL, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huff JT, Zilberman D, Roy SW (2016) Mechanism for DNA transposons to generate introns on genomic scales. Nature 538:533–536

    Article  PubMed  CAS  Google Scholar 

  • Irimia M, Roy SW (2008) Spliceosomal introns as tools for genomic and evolutionary analysis. Nucleic Acids Res 36:1703–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22

    Article  CAS  PubMed  Google Scholar 

  • Jeffroy O, Brinkmann H, Delsuc F, Philippe H (2006) Phylogenomics: the beginning of incongruence? Trends Genet 22:225–231

    Article  CAS  PubMed  Google Scholar 

  • Kaiser VB, van Tuinen M, Ellegren H (2007) Insertion events of CR1 retrotransposable elements elucidate the phylogenetic branching order in Galliform Birds. Mol Biol Evol 24:338–347

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ, Doolittle WF (1997) Widespread and ancient distribution of a noncanonical genetic code in diplomonads. Mol Biol Evol 14:895–901

    Article  CAS  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  • Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, Fitch DHA (2004) Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proc Natl Acad Sci U S A 101:9003–9008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001) Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2:49–58

    Article  CAS  PubMed  Google Scholar 

  • Kosik KS (2009) OPINION MicroRNAs tell an evo-devo story. Nat Rev Neurosci 10:754–759

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    Article  CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2005) Short retroposons in Eukaryotic genomes. In: International review of cytology, vol 247. Academic Press, New York, pp 165–221

    Google Scholar 

  • Krauss V, Thümmler C, Georgi F, Lehmann J, Stadler PF, Eisenhardt C (2008) Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. Mol Biol Evol 25:821–830

    Article  CAS  PubMed  Google Scholar 

  • Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4:e91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kriegs JO, Matzke A, Churakov G, Kuritzin A, Mayr G, Brosius J, Schmitz J (2007) Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evol Biol 7:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krzywinski J, Besansky NJ (2002) Frequent intron loss in the white gene: a cautionary tale for phylogeneticists. Mol Biol Evol 19:362–366

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Stadler PF, Krauss V (2013) Near intron pairs and the metazoan tree. Mol Phylogenet Evol 66:811–823

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Fei H, Tang J, Moret BME 2012a Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proceedings of the 18th pacific symposium on Biocomputing (PSB’13), Singapore, World Scientific, pp 285–296

    Google Scholar 

  • Lin Y, Rajan V, Moret BME (2012b) TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis. Bioinformatics 28:3324–3325

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Okamura K, Tyler DM, Phillips MD, Chung WJ, Lai EC (2008) The evolution and functional diversification of animal microRNA genes. Cell Res 18:985–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons M, Cardle L, Rostoks N, Waugh R, Flavell AJ (2008) Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Gen Genomics 280:275–285

    Article  CAS  Google Scholar 

  • Malé P-JG, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-Saintagne C, Tinaut A, Chave J (2014) Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Mol Ecol Resour 14:966–975

    PubMed  Google Scholar 

  • Malik HS, Eickbush TH (1998) The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol Biol Evol 15:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moret BME, Lin Y, Tang J (2013) Rearrangements in phylogenetic inference: compare, model, or encode? In: Chauve C, El-Mabrouk N, Tannier E (eds) Models and algorithms for genome evolution. Springer London, London, pp 147–171

    Chapter  Google Scholar 

  • Moret BME, Wyman S, Bader D, Warnow T, Yan M A 2001 new implementation and detailed study of breakpoint analysis. In: Proceedings of the 6th pacific symposim on Biocomputing (PSB’01), Singapore, World Scientific, pp 583–594

    Google Scholar 

  • Morgan GT (1995) Identification in the human genome of mobile elements spread by DNA-mediated transposition. J Mol Biol 254:1–5

    Article  CAS  PubMed  Google Scholar 

  • Nishihara H, Maruyama S, Okada N (2009) Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals. Proc Natl Acad Sci U S A 106:5235–5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa M, Miura S, Nei M (2010) Origins and evolution of microRNA genes in Drosophila species. Genome Biol Evol 2:180–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osawa S, Jukes TH (1989) Codon reassignment (codon capture) in evolution. J Mol Evol 28:271–278

    Article  CAS  PubMed  Google Scholar 

  • Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6:893–904

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray DA, Xing J, Salem AH, Batzer MA (2006) SINEs of a nearly perfect character. Syst Biol 55:928–935

    Article  PubMed  Google Scholar 

  • Richter S, Meier R (1994) The development of phylogenetic concepts in Hennig’s early theoretical publications (1947–1966). Syst Biol 43:212–221

    Article  Google Scholar 

  • Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C (2015) The utility of genome skimming for phylogenomic analyses as demonstrated for glycerid relationships (Annelida, Glyceridae). Genome Biol Evol 7:3443–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  CAS  PubMed  Google Scholar 

  • Rota-Stabelli OR-SO, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc Lond B Biol Sci 278:298–306

    Article  CAS  Google Scholar 

  • Roy SW (2016) How common is parallel intron gain? Rapid evolution versus independent creation in recently created introns in daphnia. Mol Biol Evol 33:1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2005a) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci U S A 102:5773–5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SW, Gilbert W (2005b) Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci U S A 102:4403–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF, Cedergren R (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci U S A 89:6575–6579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz DW, Yarus M (1994) Transfer RNA mutation and the malleability of the genetic code. J Mol Biol 235:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: Insights into evolutionary complexity and constraint. J Exp Zool Part B 306B:575–588

    Article  CAS  Google Scholar 

  • Sengupta S, Yang X, Higgs PG (2007) The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 64:662–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA Genes. Mol Biol Evol 20:362–370

    Article  CAS  PubMed  Google Scholar 

  • Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. BioEssays 22:148–160

    Article  CAS  PubMed  Google Scholar 

  • Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechika I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670

    Article  CAS  PubMed  Google Scholar 

  • Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling EA, Pisani D, Peterson KJ (2011) Molecular paleobiological insights into the origin of the Brachiopoda. Evol Dev 13:290–303

    Article  PubMed  Google Scholar 

  • Sperling EA, Vinther J, Moy VN, Wheeler BM, Semon M, Briggs DEG, Peterson KJ (2009) MicroRNAs resolve an apparent conflict between annelid systematics and their fossil record. Proc R Soc Lond B Biol Sci 276:4315–4322

    Article  CAS  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturtevant AH, Dobzhansky T (1936) Inversions in the third chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of the species. Proc Natl Acad Sci U S A 22:448–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, Kriegs JO, Schmitz J (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2:443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suh A, Smeds L, Ellegren H (2015) The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol 13:e1002224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV (2005) Conservation versus parallel gains in intron evolution. Nucleic Acids Res 33:1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Terai Y, Nishida M, Okada N (2001) Phylogenetic relationships and ancient incomplete lineage sorting among cichlid fishes in Lake Tanganyika as revealed by analysis of the insertion of retroposons. Mol Biol Evol 18:2057–2066

    Article  CAS  PubMed  Google Scholar 

  • Tanzer A, Amemiya CT, Kim CB, Stadler PF (2005) Evolution of microRNAs located within Hox gene clusters. J Exp Zool Part B 304B:75–85

    Article  CAS  Google Scholar 

  • Tarailo-Graovac M, Chen N (2009) Using repeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics Chapter 4, Unit 4, p 108

    Google Scholar 

  • Tarver JE, Sperling EA, Nailor A, Heimberg AM, Robinson JM, King BL, Pisani D, Donoghue PCJ, Peterson KJ (2013) miRNAs: Small genes with big potential in metazoan phylogenetics. Mol Biol Evol 30:2369–2382

    Article  CAS  PubMed  Google Scholar 

  • Telford MJ, Herniou EA, Russell RB, Littlewood DTJ (2000) Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci U S A 97:11359–11364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson RC, Plachetzki DC, Mahler DL, Moore BR (2014) A critical appraisal of the use of microRNA data in phylogenetics. Proc Natl Acad Sci U S A 111:E3659–E3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesh B, Ning Y, Brenner S (1999) Late changes in spliceosomal introns define clades in vertebrate evolution. Proc Natl Acad Sci U S A 96:10267–10271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddell PJ, Kishino H, Ota R (2001) A phylogenetic foundation for comparative mammalian genomics. Genome Inform 12:141–154

    CAS  PubMed  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Yaakov B, Ceylan E, Domb K, Kashkush K (2012) Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution. Theor Appl Genet 124:1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21:3340–3346

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Rogozin IB, Koonin EV, Przytycka TM (2007) Support for the Coelomata Clade of Animals from a Rigorous Analysis of the Pattern of Intron Conservation. Mol Biol Evol 24:2583–2592

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bleidorn, C. (2017). Rare Genomic Changes. In: Phylogenomics. Springer, Cham. https://doi.org/10.1007/978-3-319-54064-1_10

Download citation

Publish with us

Policies and ethics