Skip to main content

Abstract

Bacteriophages are a double-edged sword in nature and in the hands of a skilled scientist. On the one hand they are able to spread invasive exotoxins, virulence factors of antimicrobial resistance (AMR), to other bacteria via lysogenic bacteriophages which could be used as a possible biothreat. On the other hand, they can be a safeguard or a watchdog to provide enormous benefit via lytic bacteriophages to combat bioterrorism and by developing many novel environmentally friendly technologies. For example, we may develop rapid diagnostics for biothreats or bioalarms and biocontrol to prevent and treat attacks in situ. We constructed a model that can contain the impact of classic agents of biological warfare such as Bacillus anthracis spores’ using aerosols to protect people and animals in crowded areas, malls, schools, stadia, airports, on farms, etc. Other models are used to illustrate the rapid implementation of programmed bacteriophages to engage or dismantle threats post attack with bacterial pathogens. Please note that although our phage programming technology (Chap. 1) can be used to induce the development of a lytic phage from the prophage state, this approach is not practical when dealing with a biothreat agent since the procedure requires a few days or even weeks to complete on samples that are collected. Thus we use highly virulent, lytic programmed phages that can effectively compete and swiftly target the bacterial biothreat agents and to ensure the bacteria are free of prophage contaminants. We also present some important means of reducing bacterial transmission and infection in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST, Lejeune JT (2007) Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinform Online 1:97–110

    PubMed  PubMed Central  Google Scholar 

  • Alexa P, Stouracova K, Hamrik J, Rychlik I (2001) Gene typing of the colonisation factors K88 (F4) in enterotoxigenic Escherichia coli strains isolated from diarrhoeic piglets. Vet Med Czech 46:46–49. http://old.vri.cz/docs/vetmed/46-2-46.pdf

  • Andrews WH, Hammack TS (2001) Salmonella. In: Bacteriological analytical manual, 8th edn. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Athamna A, Athamna M, Abu-Rashed N et al (2004) Selection of Bacillus anthracis isolates resistant to antibiotics. J Antimicrob Chemother 54:424–428

    Article  CAS  PubMed  Google Scholar 

  • Barra JJ, Auroa R, Furlana M et al (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. PNAS 10(26):10771–10776. doi:10.1073/pnas.1305923110

    Article  Google Scholar 

  • Bielaszewska M, Mellmann A, Zhang W, Köck R et al (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676

    Article  CAS  PubMed  Google Scholar 

  • Binczycka-Anholcer M, Imiołek A (2011) Bioterrorism as a form of modern terrorism. Hygeia Public Health 46(3):326–333

    Google Scholar 

  • Biscay WR, Murphy JR (1988) Bacteriophage gene products that cause human disease. In: Calendar R (ed) The bacteriophages. Plenum Press, New York, pp 683–724

    Google Scholar 

  • Block SM (1999) Living nightmares: biological threats enabled by molecular biology. In: Drell SD, Sofaer AD, Wilson GD (eds) The new terror: facing the threat of biological and chemical weapons. Hoover Institution Press, Stanford, pp 39–75

    Google Scholar 

  • Boyd EF (2012) Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res 82:91–118. doi:10.1016/B978-0-12-394621-8.00014-5

    Article  CAS  PubMed  Google Scholar 

  • Boyd EF, Brüssow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10(11):521–529. doi:10.1016/S0966-842X(02)02459-9

    Article  CAS  PubMed  Google Scholar 

  • Brabban AD, Hite E, Callaway TR (2005) Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis 2:287–303. doi:10.1089/fpd.2005.2.287

    Article  CAS  PubMed  Google Scholar 

  • Brigati J, Williams DD, Sorokulova IB et al (2004) Diagnostic probes for Bacillus anthracis spores selected from a landscape phage library. Clin Chem 50(10):1899–1906

    Google Scholar 

  • Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052. doi:10.1016/j.cub.2006.08.089

    Article  CAS  PubMed  Google Scholar 

  • Brown SP, Inglis RF, Taddei F (2009a) Evolutionary ecology of microbial wars: within-host competition and (incidental) virulence. Evol Appl 2:32–39. doi:10.1111/j.1752-4571.2008.00059.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown SP, West SA, Diggle SP, Griffin AS (2009b) Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc B Biol Sci 364:3157–3168. doi:10.1098/rstb.2009.0055

    Article  Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602. doi:10.1128/mmbr.68.3.560-602.2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Canchaya C, Fournous G, Chibani-Chennoufi S et al (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6(4):417–424

    Article  CAS  PubMed  Google Scholar 

  • CDC (Centers for Disease Control and Prevention) (2013) Office of infectious disease antibiotic resistance threats in the United States, 2013. Apr 2013. Available at: http://www.cdc.gov/drugresistance/threat-report-2013. Accessed 28 Jan 2015

  • CDC (Centers for Disease Control and Prevention) (2016) Antibiotic/Antimicrobial resistance Available at: https://www.cdc.gov/drugresistance/. Accessed 14 July 2016

  • Casas V, Maloy S (2011) Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens. Future Microbiol 6:1461–1473. doi:10.2217/fmb.11.124

    Article  CAS  PubMed  Google Scholar 

  • Charles RC, Ryan ET (2011) Cholera in the 21st century. Curr Opin Infect Dis 24(5):472–477. doi:10.1097/QCO.0b013e32834a88af

    Article  PubMed  Google Scholar 

  • CRSR-US-Congressional Research Service Report Life Expectancy in the United States. Mar 2005 (2015) Available at: http://www.cnie.org/nle/crsreports/05mar/RL32792.pdf. Accessed 5 Jan 2015

  • Daniszewski P (2013) Bacillus anthracis—as biological weapons. Int Lett Soc Humanist Sci 9:74–83

    Article  Google Scholar 

  • Denyer SP, Jassim SAA, Fearon PS et al (1998) Genetically engineered reporter bacteria for the detection of bacteriophage. United States Patent 5723330. http://www.patentgenius.com/patent/5723330.html

  • DePaula AMR, Gelli DS, Landgraf M et al (2002) Detection of Salmonella in foods using Tecra Salmonella VIA and Tecra Salmonella UNIQUE rapid immunoassays and a cultural procedure. J Food Prot 65:552–555

    Article  Google Scholar 

  • Dickinson JH, Kroll RG, Grant KA (1995) The direct application of the polymerase chain reaction to DNA extracted from foods. Lett Appl Microbiol 20:212–216

    Article  CAS  PubMed  Google Scholar 

  • Dionisio F (2007) Selfish and spiteful behaviour through parasites and pathogens. Evol Ecol Res 9:1199–1210

    Google Scholar 

  • Edlin G, Lin L, Kudrna R (1975) Lambda lysogens of Escherichia coli reproduce more rapidly than non-lysogens. Nature 255:735–737. doi:10.1038/255735a0

    Article  CAS  PubMed  Google Scholar 

  • Edlin G, Lin L, Bitner R (1977) Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J Virol 21:560–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Tong Y (2012) Potential duel-use of bacteriophage related technologies in bioterrorism and biodefense. J Bioterr Biodef 3:121. doi:10.4172/2157-2526.1000121

    Article  Google Scholar 

  • Filippov AA, Sergueev KV, Nikolich MP (2013) Bacteriophages against biothreat bacteria: diagnostic, environmental and therapeutic applications. J Bioterr Biodef S 3:010. doi:10.4172/2157-2526.S3-010

    Google Scholar 

  • Friedlander AM, Welkos SL, Pitt ML et al (1993) Post exposure prophylaxis against experimental inhalation anthrax. J Infect Dis 167:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Li S, Zhanget K et al (2011a) Detection of Bacillus anthracis spores using phage-immobilized magnetostrictive milli/micro cantilevers. J IEEE Sens J 11(8):1684–1691. doi:10.1109/JSEN.2010.2095002

    Article  Google Scholar 

  • Fu X, Walter MH, Paredes A et al (2011b) The mechanism of DNA ejection in the Bacillus anthracis spore-binding phage8a revealed by cryo-electron tomography. Virology 421(2):141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Tatsumi H, Igimi S, Yamamoto S (2005) Improved bioluminescent enzyme immunoassay for the rapid detection of Salmonella in chicken meat samples. Lett Appl Microbiol 41:379–384

    Article  CAS  PubMed  Google Scholar 

  • Galimand M, Courvalin P (2012) Plague treatment and resistance to antimicrobial agents. In: Carniel E, Hinnebusch BJ (eds) Yersinia: systems biology and control. Caister Academic Press, UK

    Google Scholar 

  • Gama JA, Reis AM, Domingues I, Mendes-Soares H et al (2013) Temperate bacterial viruses as double-edged swords in bacterial warfare. PLoS ONE 8(3):e59043. doi:10.1371/journal.pone.0059043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    Article  CAS  PubMed  Google Scholar 

  • Golkar Z, Bagazra O, Pace DG (2014) Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries 8(2):129–136

    Article  PubMed  Google Scholar 

  • Goodridge L, Griffiths M (2002) Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Res Int 35(9):863–870

    Article  CAS  Google Scholar 

  • Gorelov VN, Gubina EA, Grekova NA, Skavronskaia AG (1991) The possibility of creating a vaccinal strain of Brucella abortus 19-BA with multiple antibiotic resistance. Zh Mikrobiol Epidemiol Immunobiol 9:2–4

    Google Scholar 

  • Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence 4(2):185–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Grilló MJ, De Miguel MJ, Muñoz PM et al (2006) Efficacy of several antibiotic combinations against Brucella melitensis Rev 1 experimental infection in BALB/c mice. J Antimicrob Chemother 58:622–626. doi:10.1093/jac/dkl289

    Article  PubMed  Google Scholar 

  • Habrun I, Racic G Kompes et al (2011) The antimicrobial susceptibility and virulence factors of Bacillus anthracis strains isolated in Croatia. Vet Med 56(1):22–27

    CAS  Google Scholar 

  • Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11(1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Hamelin K, Bruant G, El-Shaarawi A, Hill S et al (2007) Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas. Appl Environ Microbiol 73:477–484

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Makino K, Ohnishi M et al (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22

    Article  CAS  PubMed  Google Scholar 

  • Henry M, Biswas B, Vincentetal L et al (2012) Development of a highly throughput assay for indirectly measuring phage growth using the OmniLog system. Bacteriophage 2(3):159–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Berrang ME, Liu T et al (2003) Rapid detection of Campylobacter coli, C. jejuni, and Salmonella enterica on poultry carcasses by using PCR-enzyme-linked immunosorbent assay. Appl Environ Microbiol 69(6):3492–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inal JM (2003) Phage therapy: a reappraisal of bacteriophages as antibiotics. Archivum Immunologiae et Therapiae Experimentalis 51(4):237–244

    CAS  PubMed  Google Scholar 

  • Inal JM, Karunakaran KV (1996) φ20 a temperate bacteriophage isolated from Bacillus anthracis exists as a plasmidial prophage. Curr Microbiol 32:171–175

    Article  CAS  PubMed  Google Scholar 

  • Inal JM, Karunakaran KV, Jones DR (1996) Bacillus thruingiensis subsp. Aizawai generalized transducing phage φHD248: restriction site map and potential for fine-structure chromosomal mapping. Microbiology 142:1409–1416

    Article  CAS  Google Scholar 

  • Jassim SAA, Denyer SP, Stewart GSAB (1995) Selective virus culture. International Patent Application, No. WO 9523848. http://patentscope.wipo.int/search/en/WO1995023848

  • Jassim SAA, Abdulamir AS, Abu Bakar F (2010a) Methods for bacteriophage design. WIPO Patent Application WO2010/064044 A1 http://www.sumobrain.com/patents/wipo/Methods-bacteriophage-design/WO2010064044A1.pdf

  • Jassim SAA, Abdulamir AS, Abu Bakar F (2010b) Phage-based limulus amoebocyte lysate assay for rapid detection of bacteria. WO2011/098820A1. http://www.lens.org/images/patent/WO/2011098820/A1/WO_2011_098820_A1.pdf

  • Jassim SAA, Akoush S, Griffiths MW (1996) Rapid detection using thermal change to monitor infection by host specific bacteriophage. IUFOST meeting food associated pathogens Uppsala, Sweden, May 1996

    Google Scholar 

  • Jassim SAA, Griffiths MW (2007) Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with Live/Dead fluorochromic stains. Lett Appl Microbiol 44(6):673–678

    Article  CAS  PubMed  Google Scholar 

  • Jassim SAA, Limoges RG (2013) The impact of changing environmental forces on cyanophage-host interactions in aquatic ecosystems. World J Microbiol Biotechnol 29(10):1751–1762. doi:10.1007/s11274-013-1358-5

  • Jassim SAA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’. World J Microbiol Biotechnol 30(8):2153–2170

    Article  PubMed  PubMed Central  Google Scholar 

  • Jassim SAA, Limoges RG, El-Cheikh H (2016) Bacteriophage biocontrol in wastewater treatment. World J Microbiol Biotechnol 32(4):70. doi:10.1007/s11274-016-2028-1

    Article  PubMed  Google Scholar 

  • Jernigan JA, Stephens DS, Ashford DA et al (2001) Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 7(6):933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jończyk-Matysiak E, Kłak M, Weber-Dąbrowska B et al (2014) Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. Biomed Res Int 2014:735413

    Google Scholar 

  • Joo J, Gunny M, Cases M, Hudson P, Albert R et al (2006) Bacteriophage-mediated competition in Bordetella bacteria. Proc Biol Sci 273:1843–1848. doi:10.1098/rspb.2006.3512

    Article  PubMed  PubMed Central  Google Scholar 

  • Josefsen MH, Krause M, Hansen F, Hoorfar J (2007) Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Appl Environ Microbiol 73(9):3040–3048. doi:10.1128/AEM.02823-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann AF, Meltzer MI, Schmid GP (1997) The economic impact of a bioterroristic attack: are prevention and postattack intervention programs justifable? Emerg Inf Dis 3:83–94

    Article  CAS  Google Scholar 

  • Keen EC (2012) Paradigms of pathogenesis: targeting the mobile genetic elements of disease. Front Cell Infect Microbiol 2:161. doi:10.3389/fcimb.2012.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AS, Morse S, Lillibridge S (2000) Public-health preparedness for biological terrorism in the USA. Lancet 356(9236):1179–1182

    Article  CAS  PubMed  Google Scholar 

  • Kiefer D, Dalantai G, Damdindorj T et al (2012) Phenotypical characterization of Mongolian Yersinia pestis strains. Vector Borne Zoonotic Dis 12:183–188

    Article  PubMed  Google Scholar 

  • Kinsara A, Al-Mowallad A, Osoba AO (1999) Increasing resistance of Brucellae to co-trimoxazole. Antimicrob Agents Chemother 43(6):1531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp J, Loessner MJ (2014) Detection of bacteria with bioluminescent reporter bacteriophage. In: Thouand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology. Springer, Berlin, vol 1:144 of the series Advances in Biochemical Engineering/Biotechnology pp 155–171. doi:10.1007/978-3-662-43385-0_5. ISBN 978-3-662-43384-3

  • Koper OB, Klabunde JS, Marchin GL et al (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins. Curr Microbiol 44(1):49–55

    Article  CAS  PubMed  Google Scholar 

  • Krylov VN (2001) Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika 37:869–887

    CAS  PubMed  Google Scholar 

  • Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Bitner R, Edlin G (1977) Increased reproductive fitness of Escherichia coli lambda lysogens. J Virol 21:554–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 69(1):290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer JJ (2011) Rapid detection and limitations of molecular techniques. Annu Rev Food Sci Technol 2:259–279. doi:10.1146/annurev.food.080708.100730

    Article  CAS  PubMed  Google Scholar 

  • Memish Z, Mah MW, Al Mahmoud S et al (2000) Brucella bacteraemia: clinical and laboratory observations in 160 patients. J Infect 40(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Merabishvili M, Pirnay JP, Verbeken G et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4:e4944. doi:10.1371/journal.pone.0004944

    Article  PubMed  PubMed Central  Google Scholar 

  • Mokrousov I (2009) Corynebacterium diphtheriae: genome diversity, population structure and genotyping perspectives. Infect Genet Evol 9(1):1–15. doi:10.1016/j.meegid.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  • Mortari A, Adami A, Lorenzelli L (2015) An unconventional approach to impedance microbiology: detection of culture media conductivity variations due to bacteriophage generated lyses of host bacteria. Biosens Bioelectron 67:615–620

    Article  CAS  PubMed  Google Scholar 

  • Myint MS, Johnson YJ, Tablante NL, Heckert RA (2006) The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiol 23(6):599–604

    Article  CAS  PubMed  Google Scholar 

  • O’Neill J (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance. Wellcome Trust and the UK Government. http://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf

  • Peltomaa R, López-Perolio I, Benito-Peña E et al (2016) Application of bacteriophages in sensor development. Anal Bioanal Chem 408(7):1805–1828. doi:10.1007/s00216-015-9087-2

    Article  CAS  PubMed  Google Scholar 

  • Pomerantsev AP, Staritsyn NA (1996) Behavior of heterologous recombinant plasmid pCET in cells of Bacillus anthracis. Genetika 32:00–509

    CAS  Google Scholar 

  • Rees CE, Rostas-Mulligan K, Park SF, Denyer SP, Stewart GSAB, Jassim SAA (1992) Methods for rapid microbial detection. PCT WO92/02633

    Google Scholar 

  • Saunders JR, Allison H, James CE, McCarthy AJ, Sharp R (2001) Phage-mediated transfer of virulence genes. J Chem Technol Biotechnol 76(7):662–666

    Article  CAS  Google Scholar 

  • Saunders NA, Lee MA (2013) Real-time PCR: advanced technologies and applications. Caister Academic Press, Norfolk

    Google Scholar 

  • Schofielda DA, Bullb CT, Rubioc I et al (2012) Development of an engineered bioluminescent reporter phage for detection of bacterial blight of crucifers. Appl Environ Microbiol 78:3592–3598. doi:10.1128/AEM.00252-12

    Article  Google Scholar 

  • Schuch R, Fischetti VA (2006) Detailed genomic analysis of the Wß and? Phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance. J Bacteriol 188:3037–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuch R, Fischetti VA (2009) The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS ONE 4:e6532

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp NJ, Molineux IJ, Page MA, Schofield DA (2016) Rapid detection of viable Bacillus anthracis spores in environmental samples by using engineered reporter phages. Appl Environ Microbiol 82(8):2380–2387. doi:10.1128/AEM.03772-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp NJ, Vandamm JP, Molineux IJ, Schofield DA (2015) Rapid detection of Bacillus anthracis in complex food matrices using phage-mediated bioluminescence. J Food Prot 78(5):963–968. doi:10.4315/0362-028X.JFP-14-534

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Lakshmanan RJ, Mathison LC et al (2009) Phage coated magnetoelastic micro-biosensors for real-time detection of Bacillus anthracis spores. Sens Actuators B Chem 137:501–506

    Article  CAS  Google Scholar 

  • Shute J (2013) Too much of a good thing. The telegraph. http://s.telegraph.co.uk/graphics/projects/antibiotic-resistance/

  • Skurnik M, Strauch E (2006) Phage therapy: facts and fiction. Int J Med Microbiol 296(1):5–14. doi:10.1016/j.ijmm.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  • Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29:995–1003. doi:10.1007/s10529-007-9346-1

    Article  CAS  PubMed  Google Scholar 

  • Smartt AE, Ripp S (2011) Bacteriophage reporter technology for sensing and detecting microbial targets. Anal Bioanal Chem 400:991–1007. doi:10.1007/s00216-010-4561-3

    Article  CAS  PubMed  Google Scholar 

  • Smartt AE, Xu T, Jegier P et al (2012) Pathogen detection using engineered bacteriophages. Anal Bioanal Chem 402:3127–3146

    Article  CAS  PubMed  Google Scholar 

  • Sousa CP (2006) The versatile strategies of Escherichia coli path types: a mini review. J Venom Anim Toxins incl Trop Dis 12:363–373

    Article  CAS  Google Scholar 

  • Spellberg B, Gilbert DN (2014) The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin Infect Dis 59(suppl 2):S71–S75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GSAB, Jassim SAA, Denyer SP et al (1998) The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J Appl Bacteriol 84(5):777–783. doi:10.1046/j.1365-2672.1998.00408.x

  • Stroud C, Viswanathan K, Powell T, Bass RR (2012) Prepositioning antibiotics for anthrax. Committee on Prepositioned Medical Countermeasures for the Public Board on Health Sciences Policy, National Academy of Sciences, Washington. ISBN 978-0-309-21808-5

    Google Scholar 

  • Taitt CR, Shubin YS, Angel R, Ligler FS (2004) Detection of Salmonella enterica serovar Typhimurium by using a rapid, array-based immunosensor. Appl Environ Microbiol 70(1):152–158. doi:10.1128/AEM.70.1.152-158.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas R (1966) Control of development in temperate bacteriophages: I. Induction of prophage genes following hetero-immune super-infection. J Mol Biol 22:79–95

    Article  CAS  Google Scholar 

  • Ulitzur S, Kuhn J (1987) Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility. In: Scholmerich J, Andreesen R, Kapp A et al (eds) Bioluminescence and chemiluminescence: new perspectives. Wiley, New York, pp 463–472

    Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277–283

    Google Scholar 

  • Verheust C, Pauwels K, Mahillon J, Helinski DR, Herman P (2010) Contained use of bacteriophages: risk assessment and biosafety recommendations. Appl Biosaf 15(1):32–44

    Article  Google Scholar 

  • Vojtek I, Pirzada ZA, Henriques-Normark B, Mastny M et al (2008) Lysogenic transfer of group A Streptococcus superantigen gene among streptococci. J Infect Dis 197(2):225–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vondruskova H, Slamova R, Trckova M et al (2010) Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: a review. Vet Med Czech 55(5):199–224

    CAS  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholerae toxin. Science 272:1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70(8):3985–3993. doi:10.1128/IAI.70.8.3985-3993.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter MH (2003) Efficacy and durability of Bacillus anthracis bacteriophages used against spores. J Environ Health 66(1):9–15

    PubMed  Google Scholar 

  • Wan J, Shu H, Huang S et al (2007a) Phage-based magnetoelastic wireless biosensors for detecting Bacillus anthracis spores. IEEE Sens J 7(3):470–477

    Article  Google Scholar 

  • Wan J, Johnson ML, Guntupalli R et al (2007b) Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sens Actuators B Chem 127:559–566

    Article  CAS  Google Scholar 

  • Weigel LM, Morse SA (2009) Implications of antibiotic resistance in potential agents of bioterrorism. In: Mayers DL (ed) Antimicrobial drug resistance. Publisher Humana Press, a part of Springer Science+Business Media, LL. Ch 90, pp 1315–1338. doi:10.1007/978-1-60327-595-8_44

  • Wright GD (2014) Something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 60(3):147–154

    Article  CAS  PubMed  Google Scholar 

  • WHO (2007) WHO guidelines on tularaemia. ISBN 978 92 4 154737 6

    Google Scholar 

  • Yang H, Wang DB, Dong Q et al (2012) Existence of separate domains in lysin PlyG for recognizing Bacillus anthracis spores and vegetative cells. Antimicrob Agents Chemother 56:5031–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabah A. A. Jassim .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jassim, S.A.A., Limoges, R.G. (2017). Bacteriophage Biodefense. In: Bacteriophages: Practical Applications for Nature's Biocontrol . Springer, Cham. https://doi.org/10.1007/978-3-319-54051-1_7

Download citation

Publish with us

Policies and ethics