Skip to main content

Optimized and Reconfigurable Environment for Simulation of Legged Robots

  • Conference paper
  • First Online:
Automation 2017 (ICA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Included in the following conference series:

Abstract

The paper presents a reconfigurable simulator of legged robots. The simulator is based on the physics engines which model the motion of rigid bodies. The goal of this research is to design reliable tool for verification new control concepts for various types of legged robots. To this end, the new architecture of robot’s configuration scheme is proposed. The new hierarchical structure of the description files allows to re-use mechanical parts of existing robots and rapidly prototype new mechanical systems. We also propose the optimization method which increases the stability of the simulator. The simulator tuning technique allows to find the set of parameters and reduce the discrepancy between the simulated and the real robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belter, D., Skrzypczyński, P., Walas, K., Wlodkowic, D.: Affordable multi-legged robots for research and STEM education: a case study of design and technological aspects. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 351, pp. 23–34. Springer, Cham (2015). doi:10.1007/978-3-319-15847-1_3

    Google Scholar 

  2. Belter, D., Walas, K.: A compact walking robot – flexible research and development platform. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 343–352. Springer, Cham (2014). doi:10.1007/978-3-319-05353-0_33

    Chapter  Google Scholar 

  3. Belter, D., Skrzypczyński, P., Walas, K., Fankhauser, P., Gehring, C., Hutter, M., Hoepflinger, M., Siegwart, R.: Dynamic simulation of legged robots using a physics engine. In: Kozłowski, K., et al. (eds.) Mobile Service Robotics, pp. 567–574. World Scientific, Singapore (2014)

    Chapter  Google Scholar 

  4. Belter, D., Skrzypczyński, P.: A biologically inspired approach to feasible gait learning for a hexapod robot. Int. J. Appl. Math. Comput. Sci. 20(1), 69–84 (2010)

    Article  MATH  Google Scholar 

  5. Bender, J., Erleben, K., Trinkle, J., Cotmans, E.: interactive simulation of rigid body dynamics in computer graphics. In: Eurographics, Cagliari (2012)

    Google Scholar 

  6. Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: GRAPHITE 2007, Perth, pp. 281–288 (2007)

    Google Scholar 

  7. Bullet physics library (2016). www.bulletphysics.org

  8. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1400–1405 (2007)

    Google Scholar 

  9. Fueng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization-based full body control for the DARPA robotics challenge. J. Field Robot. 32(2), 293–312 (2015)

    Article  Google Scholar 

  10. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M., Remy, C.D., Siegwart, R.: StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile Locomotion. In: Proceedings of the International Conference on Climbing and Walking Robots, pp. 483–493 (2012)

    Google Scholar 

  11. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    Article  Google Scholar 

  12. Kohlbrecher, S., Conner, D.C., Romay, A., Bacim, F., Bowman, D.A., von Stryk, O.: Overview of team ViGIR’s approach to the virtual robotics challenge. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (2013)

    Google Scholar 

  13. Laue, T., Röfer, T.: Simrobot - development and applications. In: Amor, H.B., Boedecker, J., Obst, O. (eds.) The Universe of RoboCup Simulators - Implementations, Challenges and Strategies for Collaboration, Workshop Proceedings of the International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2008), Venice, Italy (2008)

    Google Scholar 

  14. Nvidia Corporation, NVIDIA PhysX SDK 3.3.4 Documentation (2016). https://developer.nvidia.com/physx-sdk

  15. Smith, R.: Open dynamics engine (2016). www.ode.org

  16. Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Trans. Robot. 21(4), 632–645 (2005)

    Article  Google Scholar 

  17. Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D simulator of multiple legged robots based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74024-7_2

    Chapter  Google Scholar 

Download references

Acknowledgments

D. Belter is supported by the Poznań University of Technology grant DSMK/0154-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Belter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Spis, M., Matecki, A., Maik, P., Kurzawa, A., Kopicki, M., Belter, D. (2017). Optimized and Reconfigurable Environment for Simulation of Legged Robots. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics