Skip to main content

Keloids and Hypertrophic Scarring

  • Chapter
  • First Online:
Dermatoanthropology of Ethnic Skin and Hair

Abstract

Keloid and hypertrophic scars are diseases of excessive dermal collagen production that occur during and beyond the wound healing process. Keloid scars most commonly occur in darkly pigmented individuals, with a heightened predisposition in adolescence, young adulthood, and pregnancy. Acne lesions and areas of high tension, such as the chest, shoulder, and back, are also at higher risk for keloid development. Unlike hypertrophic scars, keloids grow beyond the original wound borders and can unpredictably progress between periods of quiescence and rapid growth. These scars can become disfiguring, symptomatic, and psychologically devastating for patients. The mainstay of treatment is intralesional corticosteroids, although surgical excision, cryotherapy, lasers, onion extract, chemotherapy, calcium antagonists, and botulinum toxin type A have been utilized. Because complete removal of keloids with current treatment options is difficult, prevention is critical in high-risk patients. This hinges on minimization of trauma, including piercing and tattooing, and aggressive acne management. Secondary preventative options include pressure therapy, silicone sheeting, and radiation. Managing patient expectations is important prior to committing to a treatment regimen, and symptom control should always be a critical part of all treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omo-Dare P. Yoruban contributions to the literature on keloids; (1943-4693 (Print)).

    Google Scholar 

  2. Ayeni OA, Ayeni OO, Jackson R. Observations on the procedural aspects and health effects of scarification in sub-Saharan Africa. J Cutan Med Surg. 2007;11(6):217–21.

    Article  PubMed  Google Scholar 

  3. Roseborough IE, Grevious MA, Lee RC. Prevention and treatment of excessive dermal scarring. J Natl Med Assoc. 2004;96(1):108–16.

    PubMed  PubMed Central  Google Scholar 

  4. Alhady SM, Sivanantharajah K. Keloids in various races. A review of 175 cases. Plast Reconstr Surg. 1969;44(6):564–6.

    Article  CAS  PubMed  Google Scholar 

  5. Dadzie OE, Alexis A, Petit A. Ethnic dermatology: principles and practice. Somerset, NJ, USA: John Wiley & Sons; 2013.

    Google Scholar 

  6. Shockman S, Paghdal KV, Cohen G. Medical and surgical management of keloids: a review. J Drugs Dermatol. 2010;9(10):1249–57.

    PubMed  Google Scholar 

  7. Schwarzenberger K, Werchniak AE, Ko CJ, editors. General dermatology. Edinburgh; New York: Saunders Elsevier; 2009.

    Google Scholar 

  8. Sobec R, et al. Ear keloids: a review and update of treatment options. Clujul Med. 2013;86(4):313–7.

    PubMed  PubMed Central  Google Scholar 

  9. Bayat A, et al. Description of site-specific morphology of keloid phenotypes in an Afrocaribbean population. Br J Plast Surg. 2004;57(2):122–33.

    Article  CAS  PubMed  Google Scholar 

  10. Wulff BC, Wilgus TA. Mast cell activity in the healing wound: more than meets the eye? Exp Dermatol. 2013;22(8):507–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kouwenberg CA, et al. Emotional quality of life is severely affected by keloid disease: pain and itch are the main determinants of burden. Plast Reconstr Surg. 2015;136(4 Suppl):150–1.

    Article  PubMed  Google Scholar 

  12. Addison T. On the keloid of Alibert, and on true keloid. Med Chir Trans. 1854;37:27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yin NC, McMichael AJ. Acne in patients with skin of color: practical management. Am J Clin Dermatol. 2014;15(1):7–16.

    Article  PubMed  Google Scholar 

  14. Rockwell WB, Cohen IK, Ehrlich HP. Keloids and hypertrophic scars: a comprehensive review. Plast Reconstr Surg. 1989;84(5):827–37.

    Article  CAS  PubMed  Google Scholar 

  15. Kischer CW. Comparative ultrastructure of hypertrophic scars and keloids. Scan Electron Microsc. 1984(Pt 1):423–31.

    Google Scholar 

  16. Amadeu T, et al. Vascularization pattern in hypertrophic scars and keloids: a stereological analysis. Pathol Res Pract. 2003;199(7):469–73.

    Article  PubMed  Google Scholar 

  17. Ehrlich HP, et al. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol. 1994;145(1):105–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown JJ, et al. Genetic susceptibility to keloid scarring: SMAD gene SNP frequencies in Afro-Caribbeans. Exp Dermatol. 2008;17(7):610–3.

    Article  CAS  PubMed  Google Scholar 

  19. Love PB, Kundu RV. Keloids: an update on medical and surgical treatments. J Drugs Dermatol. 2013;12(4):403–9.

    CAS  PubMed  Google Scholar 

  20. Marneros AG, et al. Clinical genetics of familial keloids. Arch Dermatol. 2001;137(11):1429–34.

    Article  CAS  PubMed  Google Scholar 

  21. Shih B, Bayat A. Genetics of keloid scarring. Arch Dermatol Res. 2010;302(5):319–39.

    Article  CAS  PubMed  Google Scholar 

  22. Marneros AG, et al. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol. 2004;122(5):1126–32.

    Article  CAS  PubMed  Google Scholar 

  23. Omo-Dare P. Genetic studies on keloid. J Natl Med Assoc. 1975;67(6):428–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bloom D. Heredity of keloids; review of the literature and report of a family with multiple keloids in five generations. N Y State J Med. 1956;56(4):511–9.

    CAS  PubMed  Google Scholar 

  25. Brown JJ, Bayat A. Genetic susceptibility to raised dermal scarring. Br J Dermatol. 2009;161(1):8–18.

    Article  CAS  PubMed  Google Scholar 

  26. Yan X, et al. Preliminary linkage analysis and mapping of keloid susceptibility locus in a Chinese pedigree. Zhonghua Zheng Xing Wai Ke Za Zhi. 2007;23(1):32–5.

    PubMed  Google Scholar 

  27. Seifert O, Mrowietz U. Keloid scarring: bench and bedside. Arch Dermatol Res. 2009;301(4):259–72.

    Article  PubMed  Google Scholar 

  28. Huang C, et al. A snapshot of gene expression signatures generated using microarray datasets associated with excessive scarring. Am J Dermatopathol. 2013;35(1):64–73.

    Article  PubMed  Google Scholar 

  29. Liu W, Wang DR, Cao YL. TGF-beta: a fibrotic factor in wound scarring and a potential target for anti-scarring gene therapy. Curr Gene Ther. 2004;4(1):123–36.

    Article  CAS  PubMed  Google Scholar 

  30. Ghazizadeh M, et al. Functional implications of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol. 2007;127(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  31. Profyris C, Tziotzios C, Do Vale I. Cutaneous scarring: pathophysiology, molecular mechanisms, and scar reduction therapeutics Part I. The molecular basis of scar formation. J Am Acad Dermatol. 2012;66(1):1–10; quiz 11–2.

    Google Scholar 

  32. Zhong A, et al. S100A8 and S100A9 are induced by decreased hydration in the epidermis and promote fibroblast activation and fibrosis in the dermis. Am J Pathol. 2016;186(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka A, et al. Expression of p 53 family in scars. J Dermatol Sci. 34(1):17–24.

    Google Scholar 

  34. Lee DE, et al. High-mobility group box protein-1, matrix metalloproteinases, and vitamin D in keloids and hypertrophic scars. Plast Reconstr Surg Glob Open. 2015;3(6):e425.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang C, Ogawa R. The link between hypertension and pathological scarring: does hypertension cause or promote keloid and hypertrophic scar pathogenesis? Wound Repair Regen. 2014;22(4):462–6.

    Article  CAS  PubMed  Google Scholar 

  36. Park TH, et al. Outcomes of surgical excision with pressure therapy using magnets and identification of risk factors for recurrent keloids. Plast Reconstr Surg. 2011;128(2):431–9.

    Article  CAS  PubMed  Google Scholar 

  37. Luo S, et al. Abnormal balance between proliferation and apoptotic cell death in fibroblasts derived from keloid lesions. Plast Reconstr Surg. 2001;107(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  38. Kelly AP. Pseudofolliculitis barbae and acne keloidalis nuchae. Dermatol Clin. 2003;21(4):645–53.

    Article  PubMed  Google Scholar 

  39. Madu P, Kundu RV. Follicular and scarring disorders in skin of color: presentation and management. Am J Clin Dermatol. 2014;15(4):307–21.

    Article  PubMed  Google Scholar 

  40. Sperling LC, et al. Acne keloidalis is a form of primary scarring alopecia. Arch Dermatol. 2000;136(4):479–84.

    Article  CAS  PubMed  Google Scholar 

  41. Goette DK, Berger TG. Acne keloidalis nuchae. A transepithelial elimination disorder. Int J Dermatol. 1987;26(7):442–4.

    Article  CAS  PubMed  Google Scholar 

  42. Burkhart CG, Burkhart CN. Acne keloidalis is lichen simplex chronicus with fibrotic keloidal scarring. J Am Acad Dermatol. 1998;39(4 Pt 1):661.

    Article  CAS  PubMed  Google Scholar 

  43. George AO, et al. Clinical, biochemical and morphologic features of acne keloidalis in a black population. Int J Dermatol. 1993;32(10):714–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kligman AM, Strauss JS. Pseudofolliculitis of the beard. AMA Arch Derm. 1956;74(5):533–42.

    Article  CAS  PubMed  Google Scholar 

  45. Nuovo J, Sweha A. Keloid formation from levonorgestrel implant (Norplant System) insertion. J Am Board Fam Pract. 1994;7(2):152–4.

    CAS  PubMed  Google Scholar 

  46. Lane JE, Waller JL, Davis LS. Relationship between age of ear piercing and keloid formation. Pediatrics. 2005;115(5):1312–4.

    Article  PubMed  Google Scholar 

  47. De Sousa RF, et al. Efficacy of triple therapy in auricular keloids. J Cutan Aesthet Surg. 2014;7(2):98–102.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stahl S, et al. Treatment of earlobe keloids by extralesional excision combined with preoperative and postoperative “sandwich” radiotherapy. Plast Reconstr Surg. 2010;125(1):135–41.

    Article  CAS  PubMed  Google Scholar 

  49. Reno F, et al. In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars. Wound Repair Regen. 2003;11(5):331–6.

    Article  PubMed  Google Scholar 

  50. Tejiram S, et al. Compression therapy affects collagen type balance in hypertrophic scar. J Surg Res. 2016;201(2):299–305.

    Article  PubMed  Google Scholar 

  51. Li-Tsang CW, et al. A histological study on the effect of pressure therapy on the activities of myofibroblasts and keratinocytes in hypertrophic scar tissues after burn. Burns. 2015;41(5):1008–16.

    Article  PubMed  Google Scholar 

  52. Yagmur C, et al. Mechanical receptor-related mechanisms in scar management: a review and hypothesis. Plast Reconstr Surg. 2010;126(2):426–34.

    Article  CAS  PubMed  Google Scholar 

  53. Anzarut A, et al. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis. J Plast Reconstr Aesthet Surg. 2009;62(1):77–84.

    Article  PubMed  Google Scholar 

  54. Giele H, et al. Anatomical variations in pressures generated by pressure garments. Plast Reconstr Surg 1998;101(2):399–406; discussion 407.

    Google Scholar 

  55. Naismith RS. Hypertrophic scar therapy: pressure-induced remodelling and its determinants. Glasgow: University of Strathclyde; 1980.

    Google Scholar 

  56. Engrav LH, et al. 12-Year within-wound study of the effectiveness of custom pressure garment therapy. Burns. 2010;36(7):975–83.

    Article  CAS  PubMed  Google Scholar 

  57. Bleasdale B, et al. The use of silicone adhesives for scar reduction. Adv Wound Care (New Rochelle). 2015;4(7):422–30.

    Article  Google Scholar 

  58. Kuhn MA, et al. Silicone sheeting decreases fibroblast activity and downregulates TGFbeta2 in hypertrophic scar model. Int J Surg Investig. 2001;2(6):467–74.

    CAS  PubMed  Google Scholar 

  59. Mustoe TA. Evolution of silicone therapy and mechanism of action in scar management. Aesthetic Plast Surg. 2008;32(1):82–92.

    Article  PubMed  Google Scholar 

  60. Choi J, et al. Regulation of transforming growth factor beta1, platelet-derived growth factor, and basic fibroblast growth factor by silicone gel sheeting in early-stage scarring. Arch Plast Surg. 2015;42(1):20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Borgognoni L. Biological effects of silicone gel sheeting. Wound Repair Regen. 2002;10(2):118–21.

    Article  PubMed  Google Scholar 

  62. Nickoloff BJ, Naidu Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J Am Acad Dermatol. 1994;30(4):535–46.

    Article  CAS  PubMed  Google Scholar 

  63. O’Shaughnessy KD, et al. Homeostasis of the epidermal barrier layer: a theory of how occlusion reduces hypertrophic scarring. Wound Repair Regen. 2009;17(5):700–8.

    Article  PubMed  Google Scholar 

  64. Berman B, Flores F. Comparison of a silicone gel-filled cushion and silicon gel sheeting for the treatment of hypertrophic or keloid scars. Dermatol Surg. 1999;25(6):484–6.

    Article  CAS  PubMed  Google Scholar 

  65. de Oliveira GV, et al. Silicone versus nonsilicone gel dressings: a controlled trial. Dermatol Surg. 2001;27(8):721–6.

    PubMed  Google Scholar 

  66. Fulton JE Jr. Silicone gel sheeting for the prevention and management of evolving hypertrophic and keloid scars. Dermatol Surg. 1995;21(11):947–51.

    Article  PubMed  Google Scholar 

  67. O’Brien L, Jones J. Daniel Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst Rev. 2013;. doi:10.1002/14651858.CD003826.pub3.

    Google Scholar 

  68. Chan KY, et al. A randomized, placebo-controlled, double-blind, prospective clinical trial of silicone gel in prevention of hypertrophic scar development in median sternotomy wound. Plast Reconstr Surg. 2005;116(4):1013–20; discussion 1021–2.

    Google Scholar 

  69. van der Wal MB, et al. Topical silicone gel versus placebo in promoting the maturation of burn scars: a randomized controlled trial. Plast Reconstr Surg. 2010;126(2):524–31.

    Article  PubMed  CAS  Google Scholar 

  70. Chernoff WG, Cramer H, Su-Huang S. The efficacy of topical silicone gel elastomers in the treatment of hypertrophic scars, keloid scars, and post-laser exfoliation erythema. Aesthetic Plast Surg. 2007;31(5):495–500.

    Article  PubMed  Google Scholar 

  71. Signorini M, Clementoni MT. Clinical evaluation of a new self-drying silicone gel in the treatment of scars: a preliminary report. Aesthetic Plast Surg. 2007;31(2):183–7.

    Article  PubMed  Google Scholar 

  72. Ji J, et al. Ionizing irradiation inhibits keloid fibroblast cell proliferation and induces premature cellular senescence. J Dermatol. 2015;42(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  73. Botwood N, Lewanski C, Lowdell C. The risks of treating keloids with radiotherapy. Br J Radiol. 1999;72(864):1222–4.

    Article  CAS  PubMed  Google Scholar 

  74. Kuribayashi S, et al. Post-keloidectomy irradiation using high-dose-rate superficial brachytherapy. J Radiat Res. 2011;52(3):365–8.

    Article  PubMed  Google Scholar 

  75. Jiang P, et al. Perioperative interstitial high-dose-rate brachytherapy for the treatment of recurrent keloids: feasibility and early results. Int J Radiat Oncol Biol Phys. 2016;94(3):532–6.

    Article  PubMed  Google Scholar 

  76. van Leeuwen MC, et al. Surgical excision with adjuvant irradiation for treatment of keloid scars: a systematic review. Plast Reconstr Surg Glob Open. 2015;3(7):e440.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Duan Q, et al. Postoperative brachytherapy and electron beam irradiation for keloids: a single institution retrospective analysis. Mol Clin Oncol. 2015;3(3):550–4.

    PubMed  PubMed Central  Google Scholar 

  78. Emad M, et al. Surgical excision and immediate postoperative radiotherapy versus cryotherapy and intralesional steroids in the management of keloids: a prospective clinical trial. Med Princ Pract. 2010;19(5):402–5.

    Article  PubMed  Google Scholar 

  79. Ogawa R, et al. Is radiation therapy for keloids acceptable? The risk of radiation-induced carcinogenesis. Plast Reconstr Surg. 2009;124(4):1196–201.

    Article  CAS  PubMed  Google Scholar 

  80. Shen J, et al. Hypofractionated electron-beam radiation therapy for keloids: retrospective study of 568 cases with 834 lesions. J Radiat Res. 2015;56(5):811–7.

    Article  PubMed  PubMed Central  Google Scholar 

  81. van Leeuwen MC, et al. High-dose-rate brachytherapy for the treatment of recalcitrant keloids: a unique, effective treatment protocol. Plast Reconstr Surg. 2014;134(3):527–34.

    Article  PubMed  CAS  Google Scholar 

  82. McKeown SR, et al. Radiotherapy for benign disease; assessing the risk of radiation-induced cancer following exposure to intermediate dose radiation. Br J Radiol. 1056;2015(88):20150405.

    Google Scholar 

  83. Sakamoto T, et al. Dose-response relationship and dose optimization in radiotherapy of postoperative keloids. Radiother Oncol. 2009;91(2):271–6.

    Article  PubMed  Google Scholar 

  84. Tziotzios C, Profyris C, Sterling J. Cutaneous scarring: pathophysiology, molecular mechanisms, and scar reduction therapeutics Part II. Strategies to reduce scar formation after dermatologic procedures. J Am Acad Dermatol. 2012;66(1):13–24; quiz 25–6.

    Google Scholar 

  85. Huang L, et al. A study of the combination of triamcinolone and 5-fluorouracil in modulating keloid fibroblasts in vitro. J Plast Reconstr Aesthet Surg. 2013;66(9):e251–9.

    Article  PubMed  Google Scholar 

  86. Heppt MV, et al. Current strategies in the treatment of scars and keloids. Facial Plast Surg. 2015;31(4):386–95.

    Article  CAS  PubMed  Google Scholar 

  87. Cavalie M, et al. Treatment of keloids with laser-assisted topical steroid delivery: a retrospective study of 23 cases. Dermatol Ther. 2015;28(2):74–8.

    Article  PubMed  Google Scholar 

  88. Fredman R, Tenenhaus M. Cushing’s syndrome after intralesional triamcinolone acetonide: a systematic review of the literature and multinational survey. Burns. 2013;39(4):549–57.

    Article  PubMed  Google Scholar 

  89. Bashir MM, et al. Comparison of single intra operative versus an intra operative and two post operative injections of the triamcinolone after wedge excision of keloids of helix. J Pak Med Assoc. 2015;65(7):737–41.

    PubMed  Google Scholar 

  90. Berman B, Flores F. Recurrence rates of excised keloids treated with postoperative triamcinolone acetonide injections or interferon alfa-2b injections. J Am Acad Dermatol. 1997;37(5 Pt 1):755–7.

    Article  CAS  PubMed  Google Scholar 

  91. Lawrence WT. In search of the optimal treatment of keloids: report of a series and a review of the literature. Ann Plast Surg. 1991;27(2):164–78.

    Article  CAS  PubMed  Google Scholar 

  92. Sclafani AP, et al. Prevention of earlobe keloid recurrence with postoperative corticosteroid injections versus radiation therapy: a randomized, prospective study and review of the literature. Dermatol Surg. 1996;22(6):569–74.

    Article  CAS  PubMed  Google Scholar 

  93. Tan KT, et al. The influence of surgical excision margins on keloid prognosis. Ann Plast Surg. 2010;64(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  94. Lee Y, et al. A new surgical treatment of keloid: keloid core excision. Ann Plast Surg. 2001;46(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  95. Weshahy AH, Abdel Hay R. Intralesional cryosurgery and intralesional steroid injection: a good combination therapy for treatment of keloids and hypertrophic scars. Dermatol Ther. 2012;25(3):273–6.

    Article  PubMed  Google Scholar 

  96. Dalkowski A, et al. Cryotherapy modifies synthetic activity and differentiation of keloidal fibroblasts in vitro. Exp Dermatol. 2003;12(5):673–81.

    Article  CAS  PubMed  Google Scholar 

  97. Har-Shai Y, Amar M, Sabo E. Intralesional cryotherapy for enhancing the involution of hypertrophic scars and keloids. Plast Reconstr Surg. 2003;111(6):1841–52.

    Article  PubMed  Google Scholar 

  98. van Leeuwen MC, et al. A new argon gas-based device for the treatment of keloid scars with the use of intralesional cryotherapy. J Plast Reconstr Aesthet Surg. 2014;67(12):1703–10.

    Article  PubMed  Google Scholar 

  99. van Leeuwen MC, et al. Intralesional cryotherapy for treatment of keloid scars: a prospective study. Plast Reconstr Surg. 2015;135(2):580–9.

    Article  PubMed  CAS  Google Scholar 

  100. Gupta S, Kumar B. Intralesional cryosurgery using lumbar puncture and/or hypodermic needles for large, bulky, recalcitrant keloids. Int J Dermatol. 2001;40(5):349–53.

    Article  CAS  PubMed  Google Scholar 

  101. Stromps JP, et al. Intralesional cryosurgery combined with topical silicone gel sheeting for the treatment of refractory keloids. Dermatol Surg. 2014;40(9):996–1003.

    Article  CAS  PubMed  Google Scholar 

  102. Har-Shai Y, et al. Intralesional cryosurgery enhances the involution of recalcitrant auricular keloids: a new clinical approach supported by experimental studies. Wound Repair Regen. 2006;14(1):18–27.

    Article  PubMed  Google Scholar 

  103. Jin R, et al. Laser therapy for prevention and treatment of pathologic excessive scars. Plast Reconstr Surg. 2013;132(6):1747–58.

    Article  CAS  PubMed  Google Scholar 

  104. Alster TS, Williams CM. Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet. 1995;345(8959):1198–200.

    Article  CAS  PubMed  Google Scholar 

  105. Elsaie ML, Choudhary S. Lasers for scars: a review and evidence-based appraisal. J Drugs Dermatol. 2010;9(11):1355–62.

    PubMed  Google Scholar 

  106. Al-Mohamady AE, Ibrahim SM, Muhammad MM. Pulsed dye laser versus long-pulsed Nd:YAG laser in the treatment of hypertrophic scars and keloid: a comparative randomized split-scar trial. J Cosmet Laser Ther. 2016:1–5.

    Google Scholar 

  107. Nouri K, et al. Comparison of the effects of short- and long-pulse durations when using a 585-nm pulsed dye laser in the treatment of new surgical scars. Lasers Med Sci. 2010;25(1):121–6.

    Article  PubMed  Google Scholar 

  108. de las Alas JM, Siripunvarapon AH, Dofitas BL. Pulsed dye laser for the treatment of keloid and hypertrophic scars: a systematic review. Expert Rev Med Devices. 2012;9(6):641–50.

    Article  CAS  PubMed  Google Scholar 

  109. Khatri KA, Mahoney DL, McCartney MJ. Laser scar revision: a review. J Cosmet Laser Ther. 2011;13(2):54–62.

    Article  PubMed  Google Scholar 

  110. Koike S, et al. Nd:YAG laser treatment for keloids and hypertrophic scars: an analysis of 102 cases. Plast Reconstr Surg Glob Open. 2014;2(12):e272.

    Article  PubMed  Google Scholar 

  111. Azzam OA, et al. Treatment of hypertrophic scars and keloids by fractional carbon dioxide laser: a clinical, histological, and immunohistochemical study. Lasers Med Sci. 2016;31(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  112. Nicoletti G, et al. Clinical and histologic effects from CO2 laser treatment of keloids. Lasers Med Sci. 2013;28(3):957–64.

    Article  PubMed  Google Scholar 

  113. Ozog DM, et al. Evaluation of clinical results, histological architecture, and collagen expression following treatment of mature burn scars with a fractional carbon dioxide laser. JAMA Dermatol. 2013;149(1):50–7.

    Article  PubMed  Google Scholar 

  114. Pikula M, et al. Effect of enoxaparin and onion extract on human skin fibroblast cell line—therapeutic implications for the treatment of keloids. Pharm Biol. 2014;52(2):262–7.

    Article  PubMed  Google Scholar 

  115. Cho JW, et al. Onion extract and quercetin induce matrix metalloproteinase-1 in vitro and in vivo. Int J Mol Med. 2010;25(3):347–52.

    Article  CAS  PubMed  Google Scholar 

  116. Saulis AS, Mogford JH, Mustoe TA. Effect of Mederma on hypertrophic scarring in the rabbit ear model. Plast Reconstr Surg. 2002;110(1):177–83; discussion 184–6.

    Google Scholar 

  117. Wananukul S, et al. A prospective placebo-controlled study on the efficacy of onion extract in silicone derivative gel for the prevention of hypertrophic scar and keloid in median sternotomy wound in pediatric patients. J Med Assoc Thai. 2013;96(11):1428–33.

    PubMed  Google Scholar 

  118. Perez OA, et al. A comparative study evaluating the tolerability and efficacy of two topical therapies for the treatment of keloids and hypertrophic scars. J Drugs Dermatol. 2010;9(5):514–8.

    PubMed  Google Scholar 

  119. Koc E, et al. An open, randomized, controlled, comparative study of the combined effect of intralesional triamcinolone acetonide and onion extract gel and intralesional triamcinolone acetonide alone in the treatment of hypertrophic scars and keloids. Dermatol Surg. 2008;34(11):1507–14.

    CAS  PubMed  Google Scholar 

  120. Campanati A, et al. Effect of allium cepa-allantoin-pentaglycan gel on skin hypertrophic scars: clinical and video-capillaroscopic results of an open-label, controlled, nonrandomized clinical trial. Dermatol Surg. 2010;36(9):1439–44.

    Article  CAS  PubMed  Google Scholar 

  121. Khan MA, Bashir MM, Khan FA. Intralesional triamcinolone alone and in combination with 5-fluorouracil for the treatment of keloid and hypertrophic scars. J Pak Med Assoc. 2014;64(9):1003–7.

    PubMed  Google Scholar 

  122. Wilson AM. Eradication of keloids: surgical excision followed by a single injection of intralesional 5-fluorouracil and botulinum toxin. Can J Plast Surg. 2013;21(2):87–91.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sadeghinia A, Sadeghinia S. Comparison of the efficacy of intralesional triamcinolone acetonide and 5-fluorouracil tattooing for the treatment of keloids. Dermatol Surg. 2012;38(1):104–9.

    Article  CAS  PubMed  Google Scholar 

  124. Bijlard E, Steltenpool S, Niessen FB. Intralesional 5-fluorouracil in keloid treatment: a systematic review. Acta Derm Venereol. 2015;95(7):778–82.

    CAS  PubMed  Google Scholar 

  125. Camacho-Martinez FM, et al. Results of a combination of bleomycin and triamcinolone acetonide in the treatment of keloids and hypertrophic scars. An Bras Dermatol. 2013;88(3):387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Seo SH, Sung HW. Treatment of keloids and hypertrophic scars using topical and intralesional mitomycin C. J Eur Acad Dermatol Venereol. 2012;26(5):634–8.

    Article  CAS  PubMed  Google Scholar 

  127. Manca G, et al. Treatment of keloids and hypertrophic scars with bleomycin and electroporation. Plast Reconstr Surg. 2013;132(4):621e–30e.

    Article  CAS  PubMed  Google Scholar 

  128. Naeini FF, Najafian J, Ahmadpour K. Bleomycin tattooing as a promising therapeutic modality in large keloids and hypertrophic scars. Dermatol Surg. 2006;32(8):1023–9; discussion 1029–30.

    Google Scholar 

  129. Payapvipapong K, et al. The treatment of keloids and hypertrophic scars with intralesional bleomycin in skin of color. J Cosmet Dermatol. 2015;14(1):83–90.

    Article  PubMed  Google Scholar 

  130. Aggarwal H, et al. Treatment of keloids and hypertrophic scars using bleom. J Cosmet Dermatol. 2008;7(1):43–9.

    Article  PubMed  Google Scholar 

  131. Espana A, Solano T, Quintanilla E. Bleomycin in the treatment of keloids and hypertrophic scars by multiple needle punctures. Dermatol Surg. 2001;27(1):23–7.

    CAS  PubMed  Google Scholar 

  132. Lee RC, Doong H, Jellema AF. The response of burn scars to intralesional verapamil. Report of five cases. Arch Surg. 1994;129(1):107–11.

    CAS  PubMed  Google Scholar 

  133. Lee RC, Ping JA. Calcium antagonists retard extracellular matrix production in connective tissue equivalent. J Surg Res. 1990;49(5):463–6.

    Article  CAS  PubMed  Google Scholar 

  134. Giugliano G, et al. Verapamil inhibits interleukin-6 and vascular endothelial growth factor production in primary cultures of keloid fibroblasts. Br J Plast Surg. 2003;56(8):804–9.

    Article  CAS  PubMed  Google Scholar 

  135. Boggio RF, et al. Effect of a calcium-channel blocker (verapamil) on the morphology, cytoskeleton and collagenase activity of human skin fibroblasts. Burns. 2011;37(4):616–25.

    Article  PubMed  Google Scholar 

  136. Doong H, et al. The 1996 Lindberg Award. Calcium antagonists alter cell shape and induce procollagenase synthesis in keloid and normal human dermal fibroblasts. J Burn Care Rehabil. 1996;17(6 Pt 1):497–514.

    Google Scholar 

  137. Verhiel S, Piatkowski de Grzymala A, van der Hulst R. Mechanism of action, efficacy, and adverse events of calcium antagonists in hypertrophic scars and keloids: a systematic review. Dermatol Surg. 2015;41(12):1343–50.

    Article  CAS  PubMed  Google Scholar 

  138. Wang R, et al. Role of verapamil in preventing and treating hypertrophic scars and keloids. Int Wound J. 2016;13(4):461–8.

    Article  PubMed  Google Scholar 

  139. Ahuja RB, Chatterjee P. Comparative efficacy of intralesional verapamil hydrochloride and triamcinolone acetonide in hypertrophic scars and keloids. Burns. 2014;40(4):583–8.

    Article  PubMed  Google Scholar 

  140. D’Andrea F, et al. Prevention and treatment of keloids with intralesional verapamil. Dermatology. 2002;204(1):60–2.

    Article  PubMed  Google Scholar 

  141. Margaret Shanthi FX, Ernest K, Dhanraj P. Comparison of intralesional verapamil with intralesional triamcinolone in the treatment of hypertrophic scars and keloids. Indian J Dermatol Venereol Leprol. 2008;74(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  142. Haubner F, et al. Effects of botulinum toxin A on patient-specific keloid fibroblasts in vitro. Laryngoscope. 2014;124(6):1344–51.

    Article  CAS  PubMed  Google Scholar 

  143. Xiaoxue W, Xi C, Zhibo X. Effects of botulinum toxin type A on expression of genes in keloid fibroblasts. Aesthet Surg J. 2014;34(1):154–9.

    Article  PubMed  Google Scholar 

  144. Zhibo X, Miaobo Z. Intralesional botulinum toxin type A injection as a new treatment measure for keloids. Plast Reconstr Surg. 2009;124(5):275e–7e.

    Article  PubMed  CAS  Google Scholar 

  145. Shaarawy E, Hegazy RA, Abdel Hay RM. Intralesional botulinum toxin type A equally effective and better tolerated than intralesional steroid in the treatment of keloids: a randomized controlled trial. J Cosmet Dermatol. 2015;14(2):161–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roopal V. Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thareja, S., Kundu, R.V. (2017). Keloids and Hypertrophic Scarring. In: Vashi, N., Maibach, H. (eds) Dermatoanthropology of Ethnic Skin and Hair. Springer, Cham. https://doi.org/10.1007/978-3-319-53961-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53961-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53960-7

  • Online ISBN: 978-3-319-53961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics