Skip to main content

FFLD-Based Modeling of Fractional-Order State Space LTI MIMO Systems

  • Conference paper
  • First Online:
Applied Physics, System Science and Computers (APSAC 2017)

Abstract

This paper introduces a multivariable version of the Grünwald-Letnikov fractional-order difference (FD) and approximates it with a powerful combination of finite fractional difference (FFD) and finite Laguerre-based difference (FLD) to yield finite fractional/Laguerre-based difference (FFLD). The multivariable FFLD is effectively used to model fractional-order state-space LTI MIMO systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, Orlando, FL (1999)

    MATH  Google Scholar 

  2. Monje, C., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Series on Advances in Industrial Control. Springer, London, UK (2010)

    Google Scholar 

  3. Chen, Y., Vinagre, B., Podlubny, I.: A new discretization method for fractional order differentiators via continued fraction expansion. In: Proceedings of DETC’2003, ASME Design Engineering Technical Conferences. vol. 340, pp. 349–362, Chicago, IL (2003)

    Google Scholar 

  4. Maione, G.: On the Laguerre rational approximation to fractional discrete derivative and integral operators. IEEE Trans. Autom. Control 58(6), 1579–1585 (2013)

    Article  MathSciNet  Google Scholar 

  5. Baeumer, B., Kovacs, M., Sankaranarayanan, H.: Higher order Grünwald approximations of fractional derivatives and fractional powers of operators. Trans. Am. Math. Soc. 367(2), 813–834 (2015)

    Article  MATH  Google Scholar 

  6. Gao, Z.: Improved Oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization. J. Sys. Eng. Electron. 23(1), 145–153 (2012)

    Article  Google Scholar 

  7. Gao, Z., Liao, X.: Rational approximation for fractional-order system by particle swarm optimization. Nonlinear Dyn. 67(2), 1387–1395 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khanra, M.: Rational approximation of fractional operator—a comparative study. In: International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India, pp. 1–5 (2010)

    Google Scholar 

  9. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ditzian, Z.: Fractional derivatives and best approximation. Acta Math. Hung. 81(4), 323–348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tseng, C.C.: Design of variable and adaptive fractional order FIR differentiators. Signal Process. 86(10), 2554–2566 (2006)

    Article  MATH  Google Scholar 

  12. Stanisławski, R., Latawiec, K.J.: Normalized finite fractional differences—the computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Stanisławski, R., Latawiec, K.J.: Modeling of open-loop stable linear systems using a combination of a finite fractional derivative and orthonormal basis functions. In: Proceedings of the 15th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 411–414 (2010)

    Google Scholar 

  14. Stanisławski, R.: New Laguerre filter approximators to the Grünwald-Letnikov fractional difference. Math. Probl. Eng. 2012, 1–21 (2012) Article ID: 732917

    Google Scholar 

  15. Stanisławski, R., Latawiec, K.J., Łukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015, 1–10, Article ID: 512104 (2015)

    Google Scholar 

  16. Stanisławski, R., Latawiec, K.J., Łukaniszyn, M., Gałek, M.: Time-domain approximations to the Grünwald-Letnikov difference with application to modeling of fractional-order state space systems. In: 20th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, pp. 579–584, Aug 2015

    Google Scholar 

  17. Stanisławski, R., Latawiec, K.J.: Fractional-order discrete-time Laguerre filters—a new tool for modeling and stability analysis of fractional-order LTI SISO systems. Discret. Dyn. Nat. Soc. 2016, 1–9, Article ID: 9590687 (2016)

    Google Scholar 

  18. Stanisławski, R., Latawiec, K.J.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability. Bull. Pol. Acad. Sci. Tech. Sci. 61(2), 353–361 (2013)

    Google Scholar 

  19. Stanisławski, R., Latawiec, K.J.: Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems. Bull. Pol. Acad. Sci. Tech. Sci. 61(2), 362–370 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof J. Latawiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Latawiec, K.J., Stanisławski, R., Łukaniszyn, M., Rydel, M., Szkuta, B.R. (2018). FFLD-Based Modeling of Fractional-Order State Space LTI MIMO Systems. In: Ntalianis, K., Croitoru, A. (eds) Applied Physics, System Science and Computers. APSAC 2017. Lecture Notes in Electrical Engineering, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-319-53934-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53934-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53933-1

  • Online ISBN: 978-3-319-53934-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics