Skip to main content

Tangle and Maximal Ideal

  • Conference paper
  • First Online:
Book cover WALCOM: Algorithms and Computation (WALCOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10167))

Included in the following conference series:

Abstract

Tangle is a dual notion of the graph parameter branch-width. The notion of tangle can be extended to connectivity systems. Ideal is an important notion that plays a foundational role in ring, set, and order theories. Tangle and (maximal) ideal are defined by axiomatic systems, and they have some axioms in common. In this paper, we define ideals on connectivity systems. Then, we address the relations between tangles and maximal ideals on connectivity systems. We demonstrate that a tangle can be considered as a non-principle maximal ideal on a connectivity system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, I.: Games for width parameters and monotonicity. arXiv preprint arXiv:0906.3857 (2009)

  2. Amini, O., Mazoit, F., Nisse, N., Thomassé, S.: Submodular partition functions. Discrete Math. 309(20), 6000–6008 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellenbaum, P., Diestel, R.: Two short proofs concerning tree-decompositions. Comb. Probab. Comput. 11(06), 541–547 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bienstock, D., Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a forest. J. Comb. Theory Ser. B 52(2), 274–283 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1511–1558. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Clark, B., Whittle, G.: Tangles, trees, and flowers. J. Comb. Theory Ser. B 103(3), 385–407 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dharmatilake, J.: A min-max theorem using matroid separations. Matroid Theory Contemp. Math. 197, 333–342 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diestel, R.: Ends and tangles. arXiv preprint arXiv:1510.04050v2 (2015)

  9. Diestel, R., Oum, S.: Unifying duality theorems for width parameters in graphs and matroids. I. Weak and strong duality. arXiv preprint arXiv:1406.3797 (2014)

  10. Fomin, F., Thilikos, D.: On the monotonicity of games generated by symmetric submodular functions. Discrete Appl. Math. 131(2), 323–335 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geelen, J., Gerards, B., Robertson, N., Whittle, G.: Obstructions to branch-decomposition of matroids. J. Comb. Theory Ser. B 96(4), 560–570 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grohe, M.: Tangled up in blue (a survey on connectivity, decompositions, and tangles). arXiv preprint arXiv:1605.06704 (2016)

  13. Leinster, T.: Codensity and the ultrafilter monad. Theory Appl. Categories 28(13), 332–370 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Lyaudet, L., Mazoit, F., Thomassé, S.: Partitions versus sets: a case of duality. Eur. J. Comb. 31(3), 681–687 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oum, S., Seymour, P.: Testing branch-width. J. Comb. Theory Ser. B 97(3), 385–393 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oum, S., Seymour, P.: Corrigendum to our paper “testing branch-width" (2009)

    Google Scholar 

  17. Reed, B.: Tree width and tangles: a new connectivity measure and some applications. Surv. Comb. 241, 87–162 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Comb. Theory Ser. B 52(2), 153–190 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sikorski, R.: Boolean Algebras. Springer, Heidelberg (1969)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 15K00007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Yamazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yamazaki, K. (2017). Tangle and Maximal Ideal. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53925-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53924-9

  • Online ISBN: 978-3-319-53925-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics