Skip to main content

Molecular Hamiltonian Operators

  • Chapter
  • First Online:
Applications of Quantum Dynamics in Chemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 98))

  • 1687 Accesses

Abstract

In the present book, we will consider molecular systems either isolated or in interaction with external electromagnetic fields. In a bottom-up approach, which we will try to follow here, a molecule, or more generally a molecular system, is regarded as a collection of electrons and nuclei in interaction with each other and possibly with external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the correspondence principle in Sect. 2.2.

  2. 2.

    A bracket notation \(\langle \vert \rangle _{{\varvec{r}}}\) is used to indicate an integration over the electronic coordinates, \({{\varvec{r}}}\), alone.

  3. 3.

    Also known as the Born expansion (see Eq. (3.56)).

  4. 4.

    As in Eq. (3.13) a Dirac bracket notation \(\langle \vert \rangle _{{\varvec{r}}}\) has been used for the integration over the electronic coordinates, \({{\varvec{r}}}\), which have thus been left out in \(H^{mol}\), \(\Phi ^{el}_m\) and \(H^{el}\).

  5. 5.

    In order to avoid all ambiguities and misunderstanding, it is worth noting that, in spite of its appearance, the matrix element \({T}_{n m}({{\varvec{R}}})\) is not a purely multiplicative operator (i.e. a pure number) but still contains differential operators with respect to \({{\varvec{R}}}\), acting on the nuclear functions \(\Psi _m ({{\varvec{R}}}, t)\). On the contrary, since \(H^{el} ({{\varvec{r}}}; {{\varvec{R}}})\) does not contain differential operators with respect to \({{\varvec{R}}}\), the matrix element \({V}_{n m}({{\varvec{R}}})\) is a pure multiplicative operator.

  6. 6.

    Equations (3.29) and (3.30) clearly show that the nuclear wavefunction \(\Psi _m^{ad} ({{\varvec{R}}}, t)\) depends on the choice of the electronic basis functions, in particular here the adiabatic electronic basis set.

  7. 7.

    rve stands for rotational, vibrational, electronic.

  8. 8.

    The second procedure may equivalently be applied to the coordinate change \(({{\varvec{R}}}_{LF}^1, \ldots , {{\varvec{R}}}_{LF}^\alpha , \ldots , {{\varvec{R}}}_{LF}^N)\) \(\rightarrow \) \(({{\varvec{R}}}_{LF}^{NCM}, {{\varvec{q}}}, {\mathbf \Theta })\) starting from the classical nuclear kinetic energy in the LF frame: \(T^{nu} = \frac{1}{2} \sum _{\alpha = 1}^N m_\alpha \dot{{\varvec{R}}}^\alpha _{LF} \cdot \dot{{\varvec{R}}}^\alpha _{LF}\).

  9. 9.

    For diatomic molecules (\(N = 2\)), the number of internal nuclear coordinates is equal to \(3N-5 = 1\).

  10. 10.

    Traditionally, \( m = 0, 1, 2, \ldots \) and m = 0 corresponds to the ground state.

  11. 11.

    These transitions generally correspond to wavelengths in the ultraviolet-visible domain.

  12. 12.

    We assume that the ground state potential energy surface has at least one local minimum.

  13. 13.

    These transitions generally correspond to wavelengths in the infrared domain. The matrix elements can also induce transitions between rotational states corresponding to wavelengths in the microwave domain.

  14. 14.

    See, for instance, Chap. 13 in Ref. [15].

  15. 15.

    \(\Psi ^{0}_0 ({{\varvec{R}}})\) is an eigenstate for the Hamiltonian operator of the electronic ground state but a wavepacket for the Hamiltonian operator of the electronic state 1.

  16. 16.

    In this section, we have dropped the subscript \({{{\varvec{r}}}}\) on brackets, as there no ambiguity: integration is performed over the electronic coordinates, \({{{\varvec{r}}}}\). In other words \(\langle \cdots \vert \cdots \rangle \) implicitly means \(\langle \cdots \vert \cdots \rangle _{{{\varvec{r}}}}\).

  17. 17.

    Note that this spin function is an eigenfunction of the total spin operator for eigenvalue zero (singulet). The separation of an electronic wavefunction into a symmetric (antisymmetric) spatial part and a antisymmetric (symmetric) spin part is in general only possible for two-electron wavefunctions.

  18. 18.

    If \(\frac{2 D_e}{\hbar \omega _e}\) occurs to be an integer, \(v_\text {max} = \frac{2 D_e}{\hbar \omega _e} - 1\), because \(E^{Morse}_{v_\text {max}+1} = E^{Morse}_{v_\text {max}}\), and only the first of the two seemingly-degenerate levels is physical. This is unlikely in actual cases but could happen when considering a numerical model.

  19. 19.

    See Eqs. (3.203) and (3.204) in Sect. 3.6.3.

References

  1. Cohen-Tannoudji C, Dupont-Roc J, Grynberg G (1997) Photons and atoms: introduction to quantum electrodynamics. Wiley Professional

    Google Scholar 

  2. Craig DP, Thirunamachandran T (1998) Molecular quantum electrodynamics. Dover Publications

    Google Scholar 

  3. Saue T (2011) Relativistic Hamiltonians for chemistry: a primer. Chem Phys Chem 12:3077

    Article  CAS  Google Scholar 

  4. Bunker PR, Jensen P (1998) Molecular symmetry and spectroscopy, 2nd edn. NRC Research Press, Ottawa

    Google Scholar 

  5. Bunker PR and Jensen P (2005) Fundamentals of molecular symmetry, iop, Bristol, Philadelphia

    Google Scholar 

  6. Sutcliffe BT (1999) The idea of the potential energy surface. In: Sax AF (ed.) Potential energy surfaces. Springer, Berlin, Heidelberg, p 61

    Google Scholar 

  7. Sutcliffe BT, Wooley RG (2005) Molecular strucutre calculations without clamping the nuclei. Phys Chem Chem Phys 7:3664

    Article  CAS  Google Scholar 

  8. Mátyus E, Hutter J, Müller-Herold U, Reicher M (2011) Extracting elements of molecular structure from all-particle wave function. J Chem Phys 135:04302

    Article  Google Scholar 

  9. Cederbaum LS (2004) Born-oppenheimer approximation and beyond. In: Domcke W, Yarkony DR, Köppel H (eds) Conical intersections. World Scientific Co., Singapore, pp 3

    Google Scholar 

  10. Sutcliffe BT (2000) The decoupling of electronic and nuclear motions in the isolated molecule Schrödinger hamiltonian. Adv Chem Phys 114:1

    Google Scholar 

  11. Zare RN (1988) Angular momentum. Wiley, New York

    Google Scholar 

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision C.02. Gaussian, Inc., Pittsburgh PA

    Google Scholar 

  13. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2010) Molpro, version 2010.1, a package of ab initio programs. http://www.molpro.net

  14. Bransden BH, Joachain CJ (2000) Quantum mechanics. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  15. Cohen-Tannoudji C, Diu B, Laloe F (1992) Quantum mechanics. Wiley-VCH

    Google Scholar 

  16. Schatz GC, Ratner MA (2002) Quantum mechanics in chemistry. Dover Publications, New York

    Google Scholar 

  17. Levine IN (1975) Molecular spectroscopy. Wiley, New-York, London

    Google Scholar 

  18. Szabo A, Ostlund NS (1996) Modern quantum chemistry. Dover, Mineola, New York

    Google Scholar 

  19. Herzberg GH (1966) Electronic spectra of polyatomic molecules. Van Nostrand Reihnold, Toronto

    Google Scholar 

  20. Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem 36:389

    CAS  Google Scholar 

  21. Herzberg G (1992) Molecular spectra and molecular structure. Krieger Pub Co

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Gatti .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gatti, F., Lasorne, B., Meyer, HD., Nauts, A. (2017). Molecular Hamiltonian Operators. In: Applications of Quantum Dynamics in Chemistry. Lecture Notes in Chemistry, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-53923-2_3

Download citation

Publish with us

Policies and ethics