Skip to main content

Abstract

Upstream processing has three important aspects: the fermentation media, the producer microorganism, and the fermentation process.

Optimization of the fermentation media is a vital aspect of process development and essential in ensuring maximization of yield and profit. Selection of suitable cost-effective carbon and energy sources and other essential nutrients is crucial.

Aspects associated with the producer microorganism include the strategy for initially obtaining a suitable microorganism, industrial strain improvement to enhance productivity and yield, maintenance of strain purity, preparation of suitable inoculum, and continuing development of selected strains to increase the economic efficiency of the process. Also important is selection of a microbial strain characterized by the ability to synthesize a specific product having a desired commercial value. This strain is then subjected to improvement protocols to maximize the ability of the strain to synthesize economical amounts of the product.

Fermentation is usually performed under rigorously controlled conditions optimized for growth of the microorganism or production of a target microbial product.

It is usually carried out in large tanks known as fermenters or bioreactors. In addition to the mechanical parts, which provide aeration, cooling, agitation, etc., tanks are usually also equipped with complex sets of monitors and control devices that maintain optimal conditions for microbial growth and product synthesis. Processing of the fermentation reactions inside the fermenter can be carried out using various engineering technologies. One of the most commonly used fermenter types is the stirred-tank fermenter, which utilizes mechanical agitation (mainly using radial-flow impellers) during the fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruggink A (1996) Biocatalysis and process integration in the synthesis of semi-synthetic antibiotics: biotechnology for industrial production of fine chemicals. Chimia 50:431–432

    CAS  Google Scholar 

  2. Borowitzka MA (1999) Pharmaceuticals and agrochemicals from microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 313–352

    Google Scholar 

  3. Brain JBW (1998) Microbiology of fermented foods, vol 1 and 2, 2nd edn. Blackie Academic and Professional, London

    Google Scholar 

  4. http://www.howstuffworks.com/dictionary/biology-terms/fermentation-info.htm

  5. Sandle T (2010) Selection of microbiological culture media and testing regimes. In: Saghee MR, Sandle T, Tidswell EC (eds) Microbiology and sterility assurance in pharmaceuticals and medical devices. Business Horizons, New Delhi, pp 101–120

    Google Scholar 

  6. Bridson E, Brecker A (1970) Design and formulation of microbiological culture media. In: J.R. Noris, D.W. Ribbons (eds) Methods in microbiology, 3A. London, Academic

    Google Scholar 

  7. Cundell A (2002) Review of media selection and incubation conditions for the compendial sterility and microbial limits tests. Pharm Forum 28:2034–2041

    Google Scholar 

  8. Sutton SVW (2005) Activities of the USP analytical microbiology expert committee during the 2000-2005 revision cycle. J Pharm Sci Technol 59:157–176

    Google Scholar 

  9. Barry AL, Fay GD (1972) A review of some common sources of error in the preparation of agar media. Am J Med Technol 38:241–245

    CAS  PubMed  Google Scholar 

  10. Baird RM et al (1986) Pharmacopoeia of culture media for food microbiology. Elsevier Science, London

    Google Scholar 

  11. Sandle T (2003) Selection and use of cleaning and disinfection agents in pharmaceutical manufacturing. In: Hodges N, Hanlon G (eds) Industrial pharmaceutical microbiology standards and controls. Euromed Communications, England. (chapter revised on several occasions)

    Google Scholar 

  12. Sandle T (2014) The Media Kitchen: preparation and testing of microbiological culture media. In: Sutton S (ed) Laboratory design: establishing the facility and management structure. Parenteral Drug Association, Bethesda, MD, pp 269–293

    Google Scholar 

  13. Booth C (2006) Media fills—trial or triumph. Lab News Aug:16–17

    Google Scholar 

  14. Evans GL et al (1996) Quality assurance for commercially prepared microbiological culture media: approved standards, 2nd edn. National Committee for Clinical Laboratory Standards, Villanova, PA

    Google Scholar 

  15. Nagel JG, Kunz LJ (1973) Needless retesting of quality-assured commercially prepared culture media. Appl Microbiol 26:31–37

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Snell JJS (1995) Preservation of control strains. In: Snell JJS, Brown DFB, Roberts C (eds) Quality assurance: principles and practice in the microbiology laboratory. Public Health Laboratory Service, London, pp 69–76

    Google Scholar 

  17. Brown MRW, Gilbert P (1995) Microbiological quality assurance: a guide towards relevance and reproducibility of inocula. CRC Press, Boca Raton, FL

    Google Scholar 

  18. Hunt GR, Stieber RW (1986) Inoculum development. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 32–40

    Google Scholar 

  19. Standbury PF, Whitakar A (1984) Principles of fermentaion technology. Pergamon Press, Oxford

    Google Scholar 

  20. Chang LT, Elander RP (1986) Long-term preservation of industrially important microorganisms. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 49–55

    Google Scholar 

  21. Monaghan RL et al (1999) Culture preservation and inoculum development. In: AL Demain, NA Solomon (eds-in-chief) Manual of industrial microbiology and biotechnology, 2nd ed. ASM, Washington, DC, pp 29-48

    Google Scholar 

  22. Lincoln RE (1960) Control of stock culture preservation and inoculum build-up in bacterial fermentation. J Biochem Microbiol Technol Eng 2:481–500

    Article  Google Scholar 

  23. Webb C, Kamat SP (1993) Improving fermentation consistency through better inoculum preparation. World J Microbiol Biotechnol 9:308–312

    Article  CAS  PubMed  Google Scholar 

  24. McDaniel LE, Bailey EG (1968) Liquid nitrogen preservation of standard inoculum: gas-phase storage. Appl Microbiol 16:912–916

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gapes JR et al (1983) A note on procedures for inoculum development for the production of solvents by a strain of Clostrodium butylicum. J Appl Bacteriol 55:363–365

    Article  Google Scholar 

  26. Gutierrez NA, Maddox IS (1987) The effect of some culture maintenance and inoculum development techniques on solvent production by Clostridium acetobutylicum. Can J Microbiol 33:82–84

    Article  CAS  Google Scholar 

  27. Cheng K-K, Zhang J-A, Liu D-H, Sun Y, Liu H-J, Yang M-D, Xu J-M (2007) Pilot-scaleproduction of 1,3-propanediol using Klebsiella pneumonia. Process Biochem 42:740–744

    Article  CAS  Google Scholar 

  28. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelia processes. Biotechnol Adv 22:189–259

    Article  CAS  PubMed  Google Scholar 

  29. Möller J et al (1992) The influence of preculture on the process performance of penicillin V production in a 100-1 air-lift tower loop reactor. Appl Microbiol Biotechnol 37:157–163

    Article  PubMed  Google Scholar 

  30. Gutiérrez-Correa M, Villena GK (2003) Surface adhesion fermentation: a new fermentation category. Revista Peruana de Biología 10:113–124

    Google Scholar 

  31. Villena G et al (2001) Cellulase production by fungal biofilms on polyester cloth. Agro Food Ind Hi Tec 12:32–35

    CAS  Google Scholar 

  32. Tengerdy RP (1992) Solid state cultivation of lignocelluloses. In: Doelle HW, Mitchell DA, Rolz CE (eds). Elsevier Science Publisher, London, pp 269–282

    Google Scholar 

  33. Crueger W, Crueger A (1984) Biotechnology: a textbook of industrial microbiology. Sinauer Associates, Sunderland

    Google Scholar 

  34. Ferenci T (2008) Bacterial physiology, regulation and mutational adaptation in a chemostat environment. Adv Microb Physiol 53:169–229

    Article  CAS  PubMed  Google Scholar 

  35. Trilli A (1986) Scale-up of fermentations. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 277–307

    Google Scholar 

  36. Ollis DF, Chang H-T (1982) Batch fermentation kinetics with (unstable) recombinant cultures. Biotechnol Bioeng 24:2583–2586

    Article  CAS  PubMed  Google Scholar 

  37. Atkinson B, Mavituna F (1983) Biochemical engineering and biotechnology handbook. Macmillan, Surrey

    Google Scholar 

  38. Martens J-H et al (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285

    Article  CAS  PubMed  Google Scholar 

  39. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. MaGraw-Hill, New York

    Google Scholar 

  40. Greasham R, Inamine E (1986) Nutritional improvement of processes. In: Demain AL, Sollamon NA (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 41–48

    Google Scholar 

  41. Nichols HW, Bold HC (1965) Trichosarcina polymorpha gen Et sp. Nov. J Phycol 1:34–38

    Article  Google Scholar 

  42. Nichols HW (1973) Growth media—freshwater. In: Stein J (ed) Handbook of phycological methods culture methods and growth measurements. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  43. Stanier RY et al (1971) Purification and properties of unicellular bluegreen algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  44. http://www.marine.csiro.au/microalgae/methods/Media

  45. Annan-Prah A et al (2010) Afr J Microbiol Res 4:2626–2628

    Google Scholar 

  46. Tharmila EC et al (2011) Thavaranjit. Arch Appl Sci Res 3:389–393

    Google Scholar 

  47. Bader FG (1986) Sterilization: prevention of contamination. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. ASM, Washington, DC, pp 345–362

    Google Scholar 

  48. Cooney CL (1983) Bioreactors: design and operation. Science 219:728–733

    Article  CAS  PubMed  Google Scholar 

  49. Van’t Riet K, Tramper J (1991) Basic bioreactor design. Dekker, New York

    Google Scholar 

  50. Kapelli O (1986) Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 28:181

    Article  Google Scholar 

  51. Gaden EL Jr (1959) Fermentation process kinetics. J Biochem Microbiol Technol Eng 1:413–429

    Article  CAS  Google Scholar 

  52. Catherine LW et al (2011) TARDIS-based microbial metabolomics: time and relative differences in systems. Trends Microbiol 19:315–322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kumara Behera, B., Varma, A. (2017). Upstream Processes. In: Microbial Biomass Process Technologies and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-53913-3_2

Download citation

Publish with us

Policies and ethics