Skip to main content

Histone Modifications in Major Depressive Disorder and Related Rodent Models

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 978))

Abstract

Major depressive disorder (MDD) is a multifactorial disease, weakly linked to multiple genetic risk factors. In contrast to that, environmental factors and “gene × environment” interaction between specific risk genes and environmental factors, such as severe or early stress exposure, have been strongly linked to MDD vulnerability. Stressors can act on the interface between an organism and the environment, the epigenome. The molecular foundation for the impact of stressors on the risk to develop MDD is based on the hormonal stress response itself: the glucocorticoid receptor (GR, encoded by NR3C1). NR3C1 can directly interact with the epigenome in the cell nucleus. Besides DNA methylation, histone modifications have been reported to be crucial targets for the interaction with the stress response system. Here, we review critical findings on the impact of the most relevant histone modifications, i.e. histone acetylation and methylation, in the context of MDD and related animal models. We discuss new treatment options which have been based on these findings, including histone deacetylase inhibitors (HDACis) and drugs targeting specific histone marks, closely linked to psychiatric disease. In this context we talk about contemporary and future approaches required to fully understand (1) the epigenetics of stress-related disease and (2) the mode of action of potential MDD drugs targeting histone modifications. This includes harnessing the unprecedented potentials of genome-wide analysis of the epigenome and transcriptome, in a cell type-specific manner, and the use of epigenome editing technologies to clearly link epigenetic marks on specific genomic loci to functional relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62:617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Krishnan V, Nestler EJ. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry. 2010;167:1305–20. doi:10.1176/appi.ajp.2009.10030434.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet. 1997a;349:1436–42.

    Article  CAS  PubMed  Google Scholar 

  4. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study. Lancet. 1997b;349:1498–504.

    Article  CAS  PubMed  Google Scholar 

  5. Bekhuis E, Schoevers RA, van Borkulo CD, Rosmalen JG, Boschloo L. The network structure of major depressive disorder, generalized anxiety disorder and somatic symptomatology. Psychol Med. 2016;46:2989–98.

    Article  CAS  PubMed  Google Scholar 

  6. Ready RE, Mather MA, Santorelli GD, Santospago BP. Apathy, alexithymia, and depressive symptoms: Points of convergence and divergence. Psychiatry Res. 2016;244:306–11. doi:10.1016/j.psychres.2016.07.046.

    Article  PubMed  Google Scholar 

  7. CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523:588–91. doi:10.1038/nature14659.

    Article  PubMed Central  Google Scholar 

  8. Klengel T, Binder EB. Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron. 2015;86:1343–57. doi:10.1016/j.neuron.2015.05.036.

    Article  CAS  PubMed  Google Scholar 

  9. Power RA, Tansey KE, Buttenschøn HN, Cohen-Woods S, Bigdeli T, Hall LS, et al. Genome-wide association for major depression through age at onset stratification: major depressive disorder working group of the psychiatric genomics consortium. Biol Psychiatry. 2016; doi:10.1016/j.biopsych.2016.05.010.

    PubMed  Google Scholar 

  10. Stein MB, Jang KL, Taylor S, Vernon PA, Livesley WJ. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am J Psychiatry. 2002;159:1675–81.

    Article  PubMed  Google Scholar 

  11. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62.

    Article  CAS  PubMed  Google Scholar 

  12. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21. doi:10.1038/456018a.

    Article  CAS  PubMed  Google Scholar 

  13. Kendler KS. Twin studies of psychiatric illness: an update. Arch Gen Psychiatry. 2001;58:1005–14.

    Google Scholar 

  14. Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ. Familial influences on the clinical characteristics of major depression: a twin study. Acta Psychiatr Scand. 1992;86:371–8.

    Article  CAS  PubMed  Google Scholar 

  15. de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–301.

    PubMed  Google Scholar 

  16. Korte SM. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev. 2001;25:117–42.

    Article  CAS  PubMed  Google Scholar 

  17. Sandi C. Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci. 2004;5:917–30.

    Article  CAS  PubMed  Google Scholar 

  18. Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry. 2010;15:574–88. doi:10.1038/mp.2009.141.

    Article  CAS  PubMed  Google Scholar 

  19. Holsboer F, Ising M. Central CRH system in depression and anxiety-evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol. 2008;583:350–7. doi:10.1016/j.ejphar.2007.12.032.

    Article  CAS  PubMed  Google Scholar 

  20. Hsu DT, Mickey BJ, Langenecker SA, Heitzeg MM, Love TM, Wang H, et al. Variation in the corticotropin-releasing hormone receptor 1 (CRHR1) gene influences fMRI signal responses during emotional stimulus processing. J Neurosci. 2012;32:3253–60. doi:10.1523/JNEUROSCI.5533-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Kloet ER. Hormones, brain and stress. Endocr Regul. 2003;37:51–68.

    PubMed  Google Scholar 

  22. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry. 2006;59:681–8.

    Article  PubMed  Google Scholar 

  23. Kino T. Glucocorticoid receptor. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, editors. South Dartmouth (MA): Endotext.MDText.com, Inc; 2013. P. 2000

    Google Scholar 

  24. Muratcioglu S, Presman DM, Pooley JR, Grøntved L, Hager GL, Nussinov R, et al. Structural modeling of GR interactions with the SWI/SNF chromatin remodeling complex and C/EBP. Biophys J. 2015;109:1227–39. doi:10.1016/j.bpj.2015.06.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voss TC, Hager GL. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet. 2014;15:69–81. doi:10.1038/nrg3623.

    Article  CAS  PubMed  Google Scholar 

  26. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–60.

    Article  CAS  PubMed  Google Scholar 

  27. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  CAS  PubMed  Google Scholar 

  28. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    Article  CAS  PubMed  Google Scholar 

  29. Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci. 2004;24:5603–10.

    Article  CAS  PubMed  Google Scholar 

  30. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–25.

    Article  CAS  PubMed  Google Scholar 

  31. Fuchikami M, Morinobu S, Kurata A, Yamamoto S, Yamawaki S. Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. Int J Neuropsychopharmacol. 2009;12:73–82. doi:10.1017/S1461145708008997.

    Article  CAS  PubMed  Google Scholar 

  32. Covington 3rd HE, Maze I, LaPlant QC, Vialou VF, Ohnishi YN, Berton O, et al. Antidepressant actions of histone deacetylase inhibitors. J Neurosci. 2009;29:11451–60. doi:10.1523/JNEUROSCI.1758-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hinwood M, Tynan RJ, Day TA, Walker FR. Repeated social defeat selectively increases δFosB expression and histone H3 acetylation in the infralimbic medial prefrontal cortex. Cereb Cortex. 2011;21:262–71. doi:10.1093/cercor/bhq080.

    Article  PubMed  Google Scholar 

  34. Montagud-Romero S, Montesinos J, Pascual M, Aguilar MA, Roger-Sanchez C, Guerri C, et al. Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:39–48. doi:10.1016/j.pnpbp.2016.04.016.

    Article  CAS  PubMed  Google Scholar 

  35. Kenworthy CA, Sengupta A, Luz SM, Ver Hoeve ES, Meda K, Bhatnagar S, et al. Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus. Neuroscience. 2014;264:88–98. doi:10.1016/j.neuroscience.2013.01.024.

    Article  CAS  PubMed  Google Scholar 

  36. Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011;69:359–72. doi:10.1016/j.neuron.2010.12.023.

    Article  CAS  PubMed  Google Scholar 

  37. Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, et al. Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biol Psychiatry. 2016; doi:10.1016/j.biopsych.2016.01.009.

    PubMed  Google Scholar 

  38. Jiang WG, Li SX, Liu JF, Sun Y, Zhou SJ, Zhu WL, et al. Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress. Psychopharmacology (Berl). 2013;227:79–92. doi:10.1007/s00213-012-2941-4.

    Article  CAS  Google Scholar 

  39. Jiang Y, Jakovcevski M, Bharadwaj R, Connor C, Schroeder FA, Lin CL, et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J Neurosci. 2010;30:7152–67. doi:10.1523/JNEUROSCI.1314-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei J, Xiong Z, Lee JB, Cheng J, Duffney LJ, Matas E, et al. Histone modification of Nedd4 ubiquitin ligase controls the loss of AMPA receptors and cognitive impairment induced by repeated stress. J Neurosci. 2016;36:2119–23. doi:10.1523/JNEUROSCI.3056-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Covington 3rd HE, Maze I, Sun H, Bomze HM, DeMaio KD, Wu EY, et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron. 2011;71:656–70. doi:10.1016/j.neuron.2011.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robison AJ, Vialou V, Sun HS, Labonte B, Golden SA, Dias C, et al. Fluoxetine epigenetically alters the CaMKIIα promoter in nucleus accumbens to regulate ΔFosB binding and antidepressant effects. Neuropsychopharmacology. 2014;39:1178–86. doi:10.1038/npp.2013.319.

    Article  CAS  PubMed  Google Scholar 

  43. Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J, Davis K, et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med. 2013;19:337–44. doi:10.1038/nm.3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cruceanu C, Alda M, Nagy C, Freemantle E, Rouleau GA, Turecki G. H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol. 2013;1:289–99. doi:10.1017/S1461145712000363.

    Article  Google Scholar 

  45. Chen ES, Ernst C, Turecki G. The epigenetic effects of antidepressant treatment on human prefrontal cortex BDNF expression. Int J Neuropsychopharmacol. 2011;14:427–9. doi: 10.1017/S146114571000 1422.

  46. Hobara T, Uchida S, Otsuki K, Matsubara T, Funato H, Matsuo K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res. 2010;44:263–70. doi:10.1016/j.jpsychires.2009.08.015.

    Article  PubMed  Google Scholar 

  47. Del Rizzo PA, Trievel RC. Substrate and product specificities of SET domain methyltransferases. Epigenetics. 2011;6:1059–67. doi:10.4161/epi.6.9.16069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen EY, Jiang Y, Javidfar B, Kassim B, Loh YH, Ma Q, et al. Neuronal deletion of Kmt2a/Mll1 histone methyltransferase in ventral striatum is associated with defective spike-timing dependent striatal synaptic plasticity, altered response to dopaminergic drugs and increased anxiety. Neuropsychopharmacology. 2016;41:3103–13. doi:10.1038/npp.2016.144.

    Article  CAS  PubMed  Google Scholar 

  49. Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A. 2006;103:3480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han A, Sung YB, Chung SY, Kwon MS. Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus. Neuropharmacology. 2014;81:292–302. doi:10.1016/j.neuropharm.2014.02.017.

    Article  CAS  PubMed  Google Scholar 

  51. Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry. 2007;62:55–64.

    Article  CAS  PubMed  Google Scholar 

  52. Schmauss C. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the anti-depressant drug fluoxetine. Sci Rep. 2015; doi:10.1038/srep08171.

    PubMed  PubMed Central  Google Scholar 

  53. Fuchikami M, Yamamoto S, Morinobu S, Okada S, Yamawaki Y, Yamawaki S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:320–4. doi:10.1016/j.pnpbp.2015.03.010.

  54. Houtepen LC, van Bergen AH, Vinkers CH, Boks MP. DNA methylation signatures of mood stabilizers and antipsychotics in bipolar disorder. Epigenomics. 2016;8:197–208. doi:10.2217/epi.15.98.

    Article  CAS  PubMed  Google Scholar 

  55. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276:36734–41.

    Article  CAS  PubMed  Google Scholar 

  56. Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang YL, Hennig KM, Gale J, Zhao WN, Reis S, Barker DD, Berry-Scott E, Kim SW, Clore EL, Hooker JM, Holson EB, Haggarty SJ, Petryshen TL. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS One. 2013; doi:10.1126/scitranslmed.aaf7551.

    Google Scholar 

  57. Wey HY, Gilbert TM, Zürcher NR, She A, Bhanot A, Taillon BD, et al. Insights into neuroepigenetics through human histone deacetylase PET imaging. Sci Transl Med. 2016; doi:10.1126/scitranslmed. aaf7551.

    PubMed  Google Scholar 

  58. Dias C, Feng J, Sun H, Shao NY, Mazei-Robison MS, Damez-Werno D, et al. β-catenin mediates stress resilience through Dicer1/microRNA regulation. Nature. 2014;516:51–5. doi:10.1038/ nature 13976.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bagot RC, Cates HM, Purushothaman I, Lorsch ZS, Walker DM, Wang J, et al. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility. Neuron. 2016;90:969–83. doi:10.1016/j.neuron.2016.04.015.

    Article  CAS  PubMed  Google Scholar 

  60. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–83. doi:10.1038/nature09692.

    Article  CAS  PubMed  Google Scholar 

  61. MacDonald JL, Roskams AJ. Histone deacetylases 1 and 2 are expressed at distinct stages of neuro-glial development. Dev Dyn. 2008;237:2256–67. doi:10.1002/dvdy.21626.

    Article  PubMed  Google Scholar 

  62. Shulha HP, Cheung I, Whittle C, Wang J, Virgil D, Lin CL, et al. Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Arch Gen Psychiatry. 2012;69:314–24. doi:10.1001/archgenpsychiatry.2011.151.

    Article  CAS  PubMed  Google Scholar 

  63. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol. 2015;16:144–54. doi: 10.1038/nrm3949.

  64. Jakovcevski M, Akbarian S, Di Benedetto B. Pharmacological modulation of astrocytes and the role of cell type-specific histone modifications for the treatment of mood disorders. Curr Opin Pharmacol. 2016;26:61–6. doi:10.1016/j.coph.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  65. Lima A, Sardinha VM, Oliveira AF, Reis M, Mota C, Silva MA, et al. Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry. 2014;19:834–41. doi:10.1038/mp.2013.182.

    Article  CAS  PubMed  Google Scholar 

  66. Mayhew J, Beart PM, Walker FR. Astrocyte and microglial control of glutamatergic signalling: a primer on understanding the disruptive role of chronic stress. J Neuroendocrinol. 2015;27:498–506. doi:10.1111/jne.12273.

    Article  CAS  PubMed  Google Scholar 

  67. Sanacora G, Banasr M. From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry. 2013;73:1172–9. doi:10.1016/ j.biopsych.2013.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bessa JM, Morais M, Marques F, Pinto L, Palha JA, Almeida OF, et al. Stress-induced anhedonia is associated with hypertrophy of medium spiny neurons of the nucleus accumbens. Transl Psychiatry. 2013; doi:10.1038/tp.2013.39.

    Google Scholar 

  69. Jakovcevski M, Ruan H, Shen EY, Dincer A, Javidfar B, Ma Q, et al. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J Neurosci. 2015;35:5097–108. doi:10.1523/JNEUROSCI.3004-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47. doi:10.1523/JNEUROSCI.1860-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gerfen CR, Paletzki R, Heintz N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron. 2013;80:1368–83. doi:10.1016/j.neuron.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  72. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci U S A. 2009;106:13939–44. doi:10.1073/pnas.0907143106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138–42. doi:10.1126/science.aaa1934.

    Article  CAS  PubMed  Google Scholar 

  74. Falahi F, Huisman C, Kazemier HG, van der Vlies P, Kok K, Hospers GA, et al. Towards sustained silencing of HER2/neu in cancer by epigenetic editing. Mol Cancer Res. 2013;11:1029–39. doi: 10.1158/1541-7786.MCR-12-0567.

  75. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510–7. doi:10.1038/nbt.3199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol. 2013;31:1133–6. doi:10.1038/nbt.2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heller EA, Hamilton PJ, Burek DD, Lombroso SI, Peña CJ, Neve RL, et al. Targeted epigenetic remodeling of the Cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci. 2016;36:4690–7. doi:10.1523/JNEUROSCI.0013-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heller EA, Cates HM, Peña CJ, Sun H, Shao N, Feng J, et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014;17:1720–7. doi:10.1038/nn.3871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The work of Dr. Mira Jakovcevski (M. J.) is supported by a NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation. M. J. is an “Attias Family Foundation Investigator”. The work of Jan M. Deussing is supported by the German Federal Ministry of Education and Research, within the framework of the e:Med research and funding concept (IntegraMent: Integrated Understanding of Causes and Mechanisms in Mental Disorders; FKZ 01ZX1314H). Authors thank Dr. Dagmar Pommereit for help with the literature screening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Jakovcevski Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Deussing, J.M., Jakovcevski, M. (2017). Histone Modifications in Major Depressive Disorder and Related Rodent Models. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_9

Download citation

Publish with us

Policies and ethics