Skip to main content

Anxiety and Epigenetics

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Abstract

Anxiety disorders are highly prevalent psychiatric disorders often comorbid with depression and substance abuse. Twin studies have shown that anxiety disorders are moderately heritable. Yet, genome-wide association studies (GWASs) have failed to identify gene(s) significantly associated with diagnosis suggesting a strong role for environmental factors and the epigenome. A number of anxiety disorder subtypes are considered “stress related.” A large focus of research has been on the epigenetic and anxiety-like behavioral consequences of stress. Animal models of anxiety-related disorders have provided strong evidence for the role of stress on the epigenetic control of the hypothalamic-pituitary-adrenal (HPA) axis and of stress-responsive brain regions. Neuroepigenetics may continue to explain individual variation in susceptibility to environmental perturbations and consequently anxious behavior. Behavioral and pharmacological interventions aimed at targeting epigenetic marks associated with anxiety may prove fruitful in developing treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62:593–602.

    Article  PubMed  Google Scholar 

  2. Smoller JW. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology. 2016;41:297–319.

    Article  CAS  PubMed  Google Scholar 

  3. Hunter RG, McEwen BS. Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation. Epigenomics. 2013;5:177–94.

    Article  CAS  PubMed  Google Scholar 

  4. Lai HMX, Cleary M, Sitharthan T, Hunt GE. Prevalence of comorbid substance use, anxiety and mood disorders in epidemiological surveys, 1990–2014: a systematic review and meta-analysis. Drug Alcohol Depend. 2015;154:1–13.

    Article  PubMed  Google Scholar 

  5. Coles ME, Schubert JR, Nota JA. Sleep, circadian rhythms, and anxious traits. Curr Psychiatry Rep. 2015;17:73.

    Article  PubMed  Google Scholar 

  6. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34:15490–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. DiCorcia JA, Tronick E. Quotidian resilience: exploring mechanisms that drive resilience from a perspective of everyday stress and coping. Neurosci Biobehav Rev. 2011;35:1593–602.

    Article  PubMed  Google Scholar 

  8. Tronick E, Hunter RG. Waddington, dynamic systems, and epigenetics. Front Behav Neurosci. 2016;10:107.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hettema JM, Neale MC, Kendler KS. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry. 2001;158:1568–78.

    Article  CAS  PubMed  Google Scholar 

  10. Perez JA, Otowa T, Roberson-Nay R, Hettema JM. In: Charney DS, Nestler EJ, Sklar P, Buxbaum JD, editors. Genetics of anxiety disorders in neurobiology of mental illness. New York: OUP; 2013.

    Google Scholar 

  11. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299:1291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Domschke K, Deckert J, O’donovan MC, Glatt SJ. Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender specificity. Am J Med Genet B Neuropsychiatr Genet. 2007;144B:667–73.

    Article  CAS  PubMed  Google Scholar 

  14. Kendler KS, Gardner CO, Annas P, Neale MC, Eaves LJ, Lichtenstein P. A longitudinal twin study of fears from middle childhood to early adulthood: evidence for a developmentally dynamic genome. Arch Gen Psychiatry. 2008;65:421–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci. 2009;10:446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Griffiths BB, Hunter RG. Neuroepigenetics of stress. Neuroscience. 2014;275:420–35.

    Article  CAS  PubMed  Google Scholar 

  17. Feinstein JS, Adolphs R, Damasio A, Tranel D. The human amygdala and the induction and experience of fear. Curr Biol. 2011;21:34–8.

    Article  CAS  PubMed  Google Scholar 

  18. Blanchard DC, Blanchard RJ. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol. 1972;81:281–90.

    Article  CAS  PubMed  Google Scholar 

  19. Kim JJ, Rison RA, Fanselow MS. Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear. Behav Neurosci. 1993;107:1093–8.

    Article  CAS  PubMed  Google Scholar 

  20. Weingarten H, White N. Exploration evoked by electrical stimulation of the amygdala of rats. Physiol Psychol. 2013;6:229–35.

    Article  Google Scholar 

  21. Maren S, Fanselow MS. Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J Neurosci. 1995;15:7548–64.

    CAS  PubMed  Google Scholar 

  22. LeDoux JE, Iwata J, Cicchetti P, Reis DJ. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci. 1988;8:2517–29.

    CAS  PubMed  Google Scholar 

  23. Campese VD, Kim J, Lázaro-Muñoz G, Pena L, LeDoux JE, Cain CK. Lesions of lateral or central amygdala abolish aversive Pavlovian-to-instrumental transfer in rats. Front Behav Neurosci. 2014;8:161.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454:600–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 2010;468:277–82.

    Article  CAS  PubMed  Google Scholar 

  26. Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420:70–4.

    Article  CAS  PubMed  Google Scholar 

  27. Milad MR, Vidal-Gonzalez I, Quirk GJ. Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci. 2004;118:389–94.

    Article  CAS  PubMed  Google Scholar 

  28. Quirk GJ, Likhtik E, Pelletier JG, Paré D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci. 2003;23:8800–7.

    CAS  PubMed  Google Scholar 

  29. Soeter M, Kindt M. An abrupt transformation of phobic behavior after a post-retrieval amnesic agent. Biol Psychiatry. 2015;78:880–6.

    Article  PubMed  Google Scholar 

  30. Mackintosh M-A, Gatz M, Wetherell JL, Pedersen NL. A twin study of lifetime generalized anxiety disorder (GAD) in older adults: genetic and environmental influences shared by neuroticism and GAD. Twin Res Hum Genet. 2006;9:30–7.

    Article  PubMed  Google Scholar 

  31. Lüthi A, Lüscher C. Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci. 2014;17:1635–43.

    Article  PubMed  CAS  Google Scholar 

  32. Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat Neurosci. 2010;13:1351–3.

    Article  CAS  PubMed  Google Scholar 

  33. Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54.

    Article  CAS  PubMed  Google Scholar 

  34. Weaver ICG, Champagne FA, Brown SE, Dymov S, Sharma S, Meaney MJ, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci. 2005;25:11045–54.

    Article  CAS  PubMed  Google Scholar 

  35. Weaver ICG, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A. 2006;103:3480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan-Vazquez A, Rye N, Ameri M, McSparron B, Smallwood G, Bickerdyke J, et al. Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety. Mol Brain. 2015;8:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Spadaro PA, Flavell CR, Widagdo J, Ratnu VS, Troup M, Ragan C, et al. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biol Psychiatry. 2015;78:848–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen EY, Jiang Y, Mao W, Futai K, Hock H, Akbarian S. Cognition and mood-related behaviors in L3mbtl1 null mutant mice. PLoS One. 2015;10:e0121252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Montesinos J, Pascual M, Rodríguez-Arias M, Miñarro J, Guerri C. Involvement of TLR4 in the long-term epigenetic changes, rewarding and anxiety effects induced by intermittent ethanol treatment in adolescence. Brain Behav Immun. 2016;53:159–71.

    Article  CAS  PubMed  Google Scholar 

  40. Teppen TL, Krishnan HR, Zhang H, Sakharkar AJ, Pandey SC. The potential role of amygdaloid microRNA-494 in alcohol-induced anxiolysis. Biol Psychiatry. 2016;80:711–9.

    Article  CAS  PubMed  Google Scholar 

  41. Morgan CP, Bale TL. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci. 2011;31:11748–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lehrner A, Bierer LM, Passarelli V, Pratchett LC, Flory JD, Bader HN, et al. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors. Psychoneuroendocrinology. 2014;40:213–20.

    Article  CAS  PubMed  Google Scholar 

  43. Yehuda R, Bierer LM. Transgenerational transmission of cortisol and PTSD risk. Prog Brain Res. 2008;167:121–35.

    Article  PubMed  Google Scholar 

  44. Yehuda R, Bell A, Bierer LM, Schmeidler J. Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors. J Psychiatr Res. 2008;42:1104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999;286:1155–8.

    Article  CAS  PubMed  Google Scholar 

  46. Beery AK, McEwen LM, MacIsaac JL, Francis DD, Kobor MS. Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats. Horm Behav. 2016;77:42–52.

    Article  CAS  PubMed  Google Scholar 

  47. Chagnon YC, Potvin O, Hudon C, Préville M. DNA methylation and single nucleotide variants in the brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) genes are associated with anxiety/depression in older women. Front Genet. 2015;6:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Non AL, Binder AM, Kubzansky LD, Michels KB. Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics. 2014;9:964–72.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sharp H, Hill J, Hellier J, Pickles A. Maternal antenatal anxiety, postnatal stroking and emotional problems in children: outcomes predicted from pre- and postnatal programming hypotheses. Psychol Med. 2015;45:269–83.

    Article  CAS  PubMed  Google Scholar 

  50. Moser DA, Paoloni-Giacobino A, Stenz L, Adouan W, Manini A, Suardi F, et al. BDNF methylation and maternal brain activity in a violence-related sample. PLoS One. 2015;10:e0143427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kaufman D, Smith ELP, Gohil BC, Banerji M, Coplan JD, Kral JG, et al. Early appearance of the metabolic syndrome in socially reared bonnet macaques. J Clin Endocrinol Metab. 2005;90:404–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kaufman D, Banerji MA, Shorman I, Smith ELP, Coplan JD, Rosenblum LA, et al. Early-life stress and the development of obesity and insulin resistance in juvenile bonnet macaques. Diabetes. 2007;56:1382–6.

    Article  CAS  PubMed  Google Scholar 

  53. Chaudhury S, Aurbach EL, Sharma V, Blandino P, Turner CA, Watson SJ, et al. FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: partnership with H3K9me3. Proc Natl Acad Sci U S A. 2014;111:11834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–101.

    Article  CAS  PubMed  Google Scholar 

  55. McEwen BS. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22:108–24.

    Article  CAS  PubMed  Google Scholar 

  56. Francis DD, Meaney MJ. Maternal care and the development of stress responses. Curr Opin Neurobiol. 1999;9:128–34.

    Article  CAS  PubMed  Google Scholar 

  57. Wosiski-Kuhn M, Stranahan AM. Opposing effects of positive and negative stress on hippocampal plasticity over the lifespan. Ageing Res Rev. 2012;11:399–403.

    Article  PubMed  Google Scholar 

  58. Vallée M, MacCari S, Dellu F, Simon H, Le Moal M, Mayo W. Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. Eur J Neurosci. 1999;11:2906–16.

    Article  PubMed  Google Scholar 

  59. Vallée M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci. 1997;17:2626–36.

    PubMed  Google Scholar 

  60. Murmu MS, Salomon S, Biala Y, Weinstock M, Braun K, Bock J. Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. Eur J Neurosci. 2006;24:1477–87.

    Article  PubMed  Google Scholar 

  61. Maccari S, Morley-Fletcher S. Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology. 2007;32(Suppl 1):S10–5.

    Article  CAS  PubMed  Google Scholar 

  62. Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28:9055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fujioka T, Sakata Y, Yamaguchi K, Shibasaki T, Kato H, Nakamura S. The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats. Neuroscience. 1999;92:1079–88.

    Article  CAS  PubMed  Google Scholar 

  64. Xu L, Sun Y, Gao L, Cai Y-Y, Shi S-X. Prenatal restraint stress is associated with demethylation of corticotrophin releasing hormone (CRH) promoter and enhances CRH transcriptional responses to stress in adolescent rats. Neurochem Res. 2014;39:1193–8.

    Article  CAS  PubMed  Google Scholar 

  65. Palacios-García I, Lara-Vásquez A, Montiel JF, Díaz-Véliz GF, Sepúlveda H, Utreras E, et al. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS One. 2015;10:e0117680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron. 2007;53:857–69.

    Article  CAS  PubMed  Google Scholar 

  67. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3:97–106.

    Article  PubMed  Google Scholar 

  68. Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res. 2013;47:880–91.

    Article  PubMed  Google Scholar 

  69. Mansell T, Novakovic B, Meyer B, Rzehak P, Vuillermin P, Ponsonby A-L, et al. The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Transl Psychiatry. 2016;6:e765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monk C, Feng T, Lee S, Krupska I, Champagne FA, Tycko B. Distress during pregnancy: epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. Am J Psychiatry. 2016;173:705–13.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tyagi E, Zhuang Y, Agrawal R, Ying Z, Gomez-Pinilla F. Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis. 2015;73:307–18.

    Article  CAS  PubMed  Google Scholar 

  72. Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC. Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci. 2013;16:42–7.

    Article  CAS  PubMed  Google Scholar 

  73. Liang F, Diao L, Liu J, Jiang N, Zhang J, Wang H, et al. Paternal ethanol exposure and behavioral abnormities in offspring: associated alterations in imprinted gene methylation. Neuropharmacology. 2014;81:126–33.

    Article  CAS  PubMed  Google Scholar 

  74. Lemaire V, Lamarque S, Le Moal M, Piazza P-V, Abrous DN. Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biol Psychiatry. 2006;59:786–92.

    Article  PubMed  Google Scholar 

  75. Fujioka T, Fujioka A, Tan N, Chowdhury GM, Mouri H, Sakata Y, et al. Mild prenatal stress enhances learning performance in the non-adopted rat offspring. Neuroscience. 2001;103:301–7.

    Article  CAS  PubMed  Google Scholar 

  76. Brand SR, Brennan PA. Impact of antenatal and postpartum maternal mental illness: how are the children? Clin Obstet Gynecol. 2009;52:441–55.

    Article  PubMed  Google Scholar 

  77. Kember RL, Dempster EL, Lee THA, Schalkwyk LC, Mill J, Fernandes C. Maternal separation is associated with strain-specific responses to stress and epigenetic alterations to Nr3c1, Avp, and Nr4a1 in mouse. Brain Behav. 2012;2:455–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Francis DD, Diorio J, Plotsky PM, Meaney MJ. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci. 2002;22:7840–3.

    CAS  PubMed  Google Scholar 

  79. Plotsky PM, Thrivikraman KV, Nemeroff CB, Caldji C, Sharma S, Meaney MJ. Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology. 2005;30:2192–204.

    Article  CAS  PubMed  Google Scholar 

  80. Caldji C, Diorio J, Meaney MJ. Variations in maternal care in infancy regulate the development of stress reactivity. Biol Psychiatry. 2000;48:1164–74.

    Article  CAS  PubMed  Google Scholar 

  81. Tang AC, Reeb-Sutherland BC, Yang Z, Romeo RD, McEwen BS. Neonatal novelty-induced persistent enhancement in offspring spatial memory and the modulatory role of maternal self-stress regulation. J Neurosci. 2011;31:5348–52.

    Article  CAS  PubMed  Google Scholar 

  82. Akers KG, Yang Z, DelVecchio DP, Reeb BC, Romeo RD, McEwen BS, et al. Social competitiveness and plasticity of neuroendocrine function in old age: influence of neonatal novelty exposure and maternal care reliability. PLoS One. 2008;3:e2840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Turner JD, Muller CP. Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: identification, and tissue distribution of multiple new human exon 1. J Mol Endocrinol. 2005;35:283–92.

    Article  CAS  PubMed  Google Scholar 

  84. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12:342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Labonte B, Yerko V, Gross J, Mechawar N, Meaney MJ, Szyf M, et al. Differential glucocorticoid receptor exon 1(B), 1(C), and 1(H) expression and methylation in suicide completers with a history of childhood abuse. Biol Psychiatry. 2012;72:41–8.

    Article  CAS  PubMed  Google Scholar 

  86. Alt SR, Turner JD, Klok MD, Meijer OC, Lakke EAJF, Derijk RH, et al. Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology. 2010;35:544–56.

    Article  CAS  PubMed  Google Scholar 

  87. McGowan PO, Sasaki A, Huang TCT, Unterberger A, Suderman M, Ernst C, et al. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One. 2008;3:e2085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Tyrka AR, Price LH, Marsit C, Walters OC, Carpenter LL. Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS One. 2012;7:e30148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Romens SE, McDonald J, Svaren J, Pollak SD. Associations between early life stress and gene methylation in children. Child Dev. 2015;86:303–9.

    Article  PubMed  Google Scholar 

  90. Suderman M, Borghol N, Pappas JJ, Pinto Pereira SM, Pembrey M, Hertzman C, et al. Childhood abuse is associated with methylation of multiple loci in adult DNA. BMC Med Genet. 2014;7:13.

    Google Scholar 

  91. Eiland L, Ramroop J, Hill MN, Manley J, McEwen BS. Chronic juvenile stress produces corticolimbic dendritic architectural remodeling and modulates emotional behavior in male and female rats. Psychoneuroendocrinology. 2012;37:39–47.

    Article  CAS  PubMed  Google Scholar 

  92. Toda H, Boku S, Nakagawa S, Inoue T, Kato A, Takamura N, et al. Maternal separation enhances conditioned fear and decreases the mRNA levels of the neurotensin receptor 1 gene with hypermethylation of this gene in the rat amygdala. PLoS One. 2014;9:e97421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Pesonen A-K, Räikkönen K. The lifespan consequences of early life stress. Physiol Behav. 2012;106:722–7.

    Article  CAS  PubMed  Google Scholar 

  94. Wu Y, Patchev AV, Daniel G, Almeida OFX, Spengler D. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology. 2014;155:1751–62.

    Article  PubMed  CAS  Google Scholar 

  95. Perroud N, Zewdie S, Stenz L, Adouan W, Bavamian S, Prada P, et al. Methylation of serotonin receptor 3a in ADHD, borderline personality, and bipolar disorders: link with severity of the disorders and childhood maltreatment. Depress Anxiety. 2016;33:45–55.

    Article  CAS  PubMed  Google Scholar 

  96. McGorry PD, Purcell R, Goldstone S, Amminger GP. Age of onset and timing of treatment for mental and substance use disorders: implications for preventive intervention strategies and models of care. Curr Opin Psychiatry. 2011;24:301–6.

    Article  PubMed  Google Scholar 

  97. Blakemore S-J. Development of the social brain during adolescence. Q J Exp Psychol (Hove). 2008;61:40–9.

    Article  Google Scholar 

  98. Blakemore S-J. Development of the social brain in adolescence. J R Soc Med. 2012;105:111–6.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gunnar MR, Wewerka S, Frenn K, Long JD, Griggs C. Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: normative changes and associations with puberty. Dev Psychopathol. 2009;21:69–85.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Romeo RD, Bellani R, Karatsoreos IN, Chhua N, Vernov M, Conrad CD, et al. Stress history and pubertal development interact to shape hypothalamic-pituitary-adrenal axis plasticity. Endocrinology. 2006;147:1664–74.

    Article  CAS  PubMed  Google Scholar 

  101. Isgor C, Kabbaj M, Akil H, Watson SJ. Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus. 2004;14:636–48.

    Article  PubMed  Google Scholar 

  102. Araki R, Nishida S, Hiraki Y, Matsumoto K, Yabe T. DNA methylation of the GC box in the promoter region mediates isolation rearing-induced suppression of srd5a1 transcription in the prefrontal cortex. Neurosci Lett. 2015;606:135–9.

    Article  CAS  PubMed  Google Scholar 

  103. Reddy DS, Kulkarni SK. Differential anxiolytic effects of neurosteroids in the mirrored chamber behavior test in mice. Brain Res. 1997;752:61–71.

    Article  CAS  PubMed  Google Scholar 

  104. Alisch RS, Chopra P, Fox AS, Chen K, White ATJ, Roseboom PH, et al. Differentially methylated plasticity genes in the amygdala of young primates are linked to anxious temperament, an at risk phenotype for anxiety and depressive disorders. J Neurosci. 2014;34:15548–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Dadds MR, Moul C, Hawes DJ, Mendoza Diaz A, Brennan J. Individual differences in childhood behavior disorders associated with epigenetic modulation of the cortisol receptor gene. Child Dev. 2015;86:1311–20.

    Article  PubMed  Google Scholar 

  106. Pandey SC, Sakharkar AJ, Tang L, Zhang H. Potential role of adolescent alcohol exposure-induced amygdaloid histone modifications in anxiety and alcohol intake during adulthood. Neurobiol Dis. 2015;82:607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sakharkar AJ, Zhang H, Tang L, Baxstrom K, Shi G, Moonat S, et al. Effects of histone deacetylase inhibitors on amygdaloid histone acetylation and neuropeptide Y expression: a role in anxiety-like and alcohol-drinking behaviours. Int J Neuropsychopharmacol. 2014;17:1207–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marschner A, Kalisch R, Vervliet B, Vansteenwegen D, Büchel C. Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J Neurosci. 2008;28:9030–6.

    Article  CAS  PubMed  Google Scholar 

  109. Zovkic IB, Sweatt JD. Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology. 2013;38:77–93.

    Article  CAS  PubMed  Google Scholar 

  110. Sultan FA, Day JJ. Epigenetic mechanisms in memory and synaptic function. Epigenomics. 2011;3:157–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Griffith JS, Mahler HR. DNA ticketing theory of memory. Nature. 1969;223:580–2.

    Article  CAS  PubMed  Google Scholar 

  112. Crick F. Memory and molecular turnover. Nature. 1984;312:101.

    Article  CAS  PubMed  Google Scholar 

  113. Holliday R. Is there an epigenetic component in long-term memory? J Theor Biol. 1999;200:339–41.

    Article  CAS  PubMed  Google Scholar 

  114. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem. 2004;279:40545–59.

    Article  CAS  PubMed  Google Scholar 

  115. Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci. 2008;28:10576–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koshibu K, Gräff J, Beullens M, Heitz FD, Berchtold D, Russig H, et al. Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci. 2009;29:13079–89.

    Article  CAS  PubMed  Google Scholar 

  117. Koshibu K, Gräff J, Mansuy IM. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience. 2011;173:30–6.

    Article  CAS  PubMed  Google Scholar 

  118. Maddox SA, Schafe GE. Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn Mem. 2011;18:579–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L-H. Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007;447:178–82.

    Article  CAS  PubMed  Google Scholar 

  120. Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gräff J, Joseph NF, Horn ME, Samiei A, Meng J, Seo J, et al. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell. 2014;156:261–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13:1161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9:519–25.

    Article  CAS  PubMed  Google Scholar 

  124. Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci. 2004;24:5603–10.

    Article  CAS  PubMed  Google Scholar 

  125. Renthal W, Maze I, Krishnan V, Covington HE, Xiao G, Kumar A, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron. 2007;56:517–29.

    Article  CAS  PubMed  Google Scholar 

  126. LaPlant Q, Vialou V, Covington HE, Dumitriu D, Feng J, Warren BL, et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci. 2010;13:1137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wilkinson MB, Xiao G, Kumar A, LaPlant Q, Renthal W, Sikder D, et al. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J Neurosci. 2009;29:7820–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Covington HE, Maze I, Sun H, Bomze HM, DeMaio KD, Wu EY, et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron. 2011;71:656–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Maze I, Covington HE, Dietz DM, LaPlant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science. 2010;327:213–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc Natl Acad Sci U S A. 2009;106:20912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker ME, Datson NA, et al. Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci U S A. 2012;109:17657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lapp HE, Hunter RG. The dynamic genome: transposons and environmental adaptation in the nervous system. Epigenomics. 2016;8:237–49.

    Article  CAS  PubMed  Google Scholar 

  133. Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, et al. DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics. 2012;4:29–40.

    Article  CAS  PubMed  Google Scholar 

  134. Patki G, Solanki N, Atrooz F, Ansari A, Allam F, Jannise B, et al. Novel mechanistic insights into treadmill exercise based rescue of social defeat-induced anxiety-like behavior and memory impairment in rats. Physiol Behav. 2014;130:135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Aguiar AS, Stragier E, da Luz SD, Remor AP, Oliveira PA, Prediger RD, et al. Effects of exercise on mitochondrial function, neuroplasticity and anxio-depressive behavior of mice. Neuroscience. 2014;271:56–63.

    Article  CAS  PubMed  Google Scholar 

  136. Gray JD, Rubin TG, Hunter RG, McEwen BS. Hippocampal gene expression changes underlying stress sensitization and recovery. Mol Psychiatry. 2014;19:1171–8.

    Article  CAS  PubMed  Google Scholar 

  137. Nasca C, Zelli D, Bigio B, Piccinin S, Scaccianoce S, Nisticò R, et al. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc Natl Acad Sci U S A. 2015;112:14960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li S, Papale LA, Kintner DB, Sabat G, Barrett-Wilt GA, Cengiz P, et al. Hippocampal increase of 5-hmC in the glucocorticoid receptor gene following acute stress. Behav Brain Res. 2015;286:236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li S, Papale LA, Zhang Q, Madrid A, Chen L, Chopra P, et al. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress. Neurobiol Dis. 2016;86:99–108.

    Article  CAS  PubMed  Google Scholar 

  140. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther. 2015;149:150–90.

    Article  CAS  PubMed  Google Scholar 

  141. De Berardis D, Orsolini L, Serroni N, Girinelli G, Iasevoli F, Tomasetti C, et al. A comprehensive review on the efficacy of S-Adenosyl-L-methionine in major depressive disorder. CNS Neurol Disord Drug Targets. 2016;15:35–44.

    Article  CAS  PubMed  Google Scholar 

  142. Mischoulon D, Price LH, Carpenter LL, Tyrka AR, Papakostas GI, Baer L, et al. A double-blind, randomized, placebo-controlled clinical trial of S-adenosyl-L-methionine (SAMe) versus escitalopram in major depressive disorder. J Clin Psychiatry. 2014;75:370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Galizia I, Oldani L, Macritchie K, Amari E, Dougall D, Jones TN, et al. S-adenosyl methionine (SAMe) for depression in adults. Cochrane Database Syst Rev. 2016;10:CD011286.

    PubMed  Google Scholar 

  144. Hunter RG, Gagnidze K, McEwen BS, Pfaff DW. Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc Natl Acad Sci U S A. 2015;112:6828–33.

    Article  CAS  PubMed  Google Scholar 

  145. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci. 2012;32:1884–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hunter RG, Seligsohn M, Rubin TG, Griffiths BB, Ozdemir Y, Pfaff DW, et al. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci U S A. 2016;113:9099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, Falke C, et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc Natl Acad Sci U S A. 2009;106:3543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hollis F, van der Kooij MA, Zanoletti O, Lozano L, Cantó C, Sandi C. Mitochondrial function in the brain links anxiety with social subordination. Proc Natl Acad Sci U S A. 2015;112:15486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Widagdo J, Zhao Q-Y, Kempen M-J, Tan MC, Ratnu VS, Wei W, et al. Experience-dependent accumulation of N6-methyladenosine in the prefrontal cortex is associated with memory processes in mice. J Neurosci. 2016;36:6771–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Hunter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bartlett, A.A., Singh, R., Hunter, R.G. (2017). Anxiety and Epigenetics. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_8

Download citation

Publish with us

Policies and ethics