Skip to main content

Histone Posttranslational Modifications in Schizophrenia

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 978))

Abstract

Schizophrenia is a complex neuropsychiatric disorder with high heritability; however, family and twin studies have indicated that environmental factors also play important roles in the etiology of disease. Environmental triggers exert their influence on behavior via epigenetic mechanisms. Epigenetic modifications, such as histone acetylation and methylation, as well as DNA methylation, can induce lasting changes in gene expression and have therefore been implicated in promoting the behavioral and neuronal behaviors that characterize this disorder. Importantly, because epigenetic processes are potentially reversible, they might serve as targets in the design of novel therapies in psychiatry. This chapter will review the current information regarding histone modifications in schizophrenia and the potential therapeutic relevance of such marks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HAT:

histone acetyltransferase

HDAC:

histone deacetylase

KDMs:

lysine demethylases

KMT:

lysine methyltransferases

polyI:C:

polyinosinic-polycytidylic acid

PRMT:

protein arginine methyltransferases

References

  1. Lewis DA, Lieberman JA. Catching up on schizophrenia: natural history and neurobiology. Neuron. 2000;28:325–34.

    Article  CAS  PubMed  Google Scholar 

  2. Meltzer HY. Suicidality in schizophrenia: a review of the evidence for risk factors and treatment options. Curr Psychiatry Rep. 2002;4:279–83.

    Article  PubMed  Google Scholar 

  3. Giegling I, Hartmann AM, Genius J, Benninghoff J, Moller HJ, Rujescu D. Systems biology and complex neurobehavioral traits. Pharmacopsychiatry. 2008;41(Suppl 1):S32–6.

    Article  PubMed  Google Scholar 

  4. Riley B, Kendler KS. Molecular genetic studies of schizophrenia. Eur J Hum Genet. 2006;14:669–80.

    Article  CAS  PubMed  Google Scholar 

  5. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT. Neurobiology of schizophrenia. Neuron. 2006;52:139–53.

    Article  CAS  PubMed  Google Scholar 

  6. McDonald C, Murray RM. Early and late environmental risk factors for schizophrenia. Brain Res Brain Res Rev. 2000;31:130–7.

    Article  CAS  PubMed  Google Scholar 

  7. Mirnics K, Levitt P, Lewis DA. Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry. 2006;60:163–76.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas EA. Molecular profiling of antipsychotic drug function: convergent mechanisms in the pathology and treatment of psychiatric disorders. Mol Neurobiol. 2006;34:109–28.

    Article  CAS  PubMed  Google Scholar 

  9. Deutsch SI, Rosse RB, Mastropaolo J, Long KD, Gaskins BL. Epigenetic therapeutic strategies for the treatment of neuropsychiatric disorders: ready for prime time? Clin Neuropharmacol. 2008;31:104–19.

    Article  PubMed  Google Scholar 

  10. Oh G, Petronis A. Environmental studies of schizophrenia through the prism of epigenetics. Schizophr Bull. 2008;34:1122–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roth TL, Lubin FD, Sodhi M, Kleinman JE. Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta. 2009;1790:869–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci. 2007;8:355–67.

    Article  CAS  PubMed  Google Scholar 

  13. Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatric disorders. Neuropsychopharmacology. 2013;38:138–66.

    Article  CAS  PubMed  Google Scholar 

  14. Nishioka M, Bundo M, Kasai K, Iwamoto K. DNA methylation in schizophrenia: progress and challenges of epigenetic studies. Genome Med. 2012;4:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447:433–40.

    Article  CAS  PubMed  Google Scholar 

  16. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999;98:285–94.

    Article  CAS  PubMed  Google Scholar 

  17. Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics. Biochem Pharmacol. 2006;72:1563–9.

    Article  CAS  PubMed  Google Scholar 

  18. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

    Article  CAS  PubMed  Google Scholar 

  19. An W. Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem. 2007;41:351–69.

    PubMed  Google Scholar 

  20. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol. 2004;338:17–31.

    Article  CAS  PubMed  Google Scholar 

  21. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.

    Article  CAS  PubMed  Google Scholar 

  22. Adcock IM, Ford P, Ito K, Barnes PJ. Epigenetics and airways disease. Respir Res. 2006;7:21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hildmann C, Riester D, Schwienhorst A. Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol. 2007;75:487–97.

    Article  CAS  PubMed  Google Scholar 

  24. Reichert N, Choukrallah MA, Matthias P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci. 2012;69:2173–87.

    Article  CAS  PubMed  Google Scholar 

  25. Morales Y, Caceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys. 2016;590:138–52.

    Article  CAS  PubMed  Google Scholar 

  26. Morera L, Lubbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics. 2016;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature. 2006;442:312–6.

    Article  CAS  PubMed  Google Scholar 

  28. Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation. Mol Cell Biol. 2011;31:4858–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sawicka A, Seiser C. Sensing core histone phosphorylation—a matter of perfect timing. Biochim Biophys Acta. 2014;1839:711–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu L, Zee BM, Wang Y, Garcia BA, Dou Y. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell. 2011;43:132–44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fuchs G, Oren M. Writing and reading H2B monoubiquitylation. Biochim Biophys Acta. 2014;1839:694–701.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431:873–8.

    Article  CAS  PubMed  Google Scholar 

  33. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron. 2000;28:53–67.

    Article  CAS  PubMed  Google Scholar 

  34. Horvath S, Janka Z, Mirnics K. Analyzing schizophrenia by DNA microarrays. Biol Psychiatry. 2010;69:157–62.

    Article  Google Scholar 

  35. Kosower NS, Gerad L, Goldstein M, Parasol N, Zipser Y, Ragolsky M, et al. Constitutive heterochromatin of chromosome 1 and Duffy blood group alleles in schizophrenia. Am J Med Genet. 1995;60:133–8.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma RP, Rosen C, Kartan S, Guidotti A, Costa E, Grayson DR, et al. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from a clinical population. Schizophr Res. 2006;88:227–31.

    Article  PubMed  Google Scholar 

  37. Gavin DP, Kartan S, Chase K, Grayson DR, Sharma RP. Reduced baseline acetylated histone 3 levels, and a blunted response to HDAC inhibition in lymphocyte cultures from schizophrenia subjects. Schizophr Res. 2008;103:330–2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chase KA, Gavin DP, Guidotti A, Sharma RP. Histone methylation at H3K9: evidence for a restrictive epigenome in schizophrenia. Schizophr Res. 2013;149:15–20.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gavin DP, Rosen C, Chase K, Grayson DR, Tun N, Sharma RP. Dimethylated lysine 9 of histone 3 is elevated in schizophrenia and exhibits a divergent response to histone deacetylase inhibitors in lymphocyte cultures. J Psychiatry Neurosci. 2009;34:232–7.

    PubMed  PubMed Central  Google Scholar 

  40. Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J Biol Chem. 2010;285:3341–50.

    Article  CAS  PubMed  Google Scholar 

  41. Sharma RP, Feiner B, Chase KA. Histone H3 phosphorylation is upregulated in PBMCs of schizophrenia patients in comparison to healthy controls. Schizophr Res. 2015;169:498–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP, et al. Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry. 2005;62:829–40.

    Article  CAS  PubMed  Google Scholar 

  43. Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP, et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci. 2007;27:11254–62.

    Article  CAS  PubMed  Google Scholar 

  44. Chase KA, Rosen C, Rubin LH, Feiner B, Bodapati AS, Gin H, et al. Evidence of a sex-dependent restrictive epigenome in schizophrenia. J Psychiatr Res. 2015;65:87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tang B, Dean B, Thomas EA. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry. 2012;1:e64.

    Article  Google Scholar 

  46. Sharma RP, Grayson DR, Gavin DP. Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res. 2008;98:111–7.

    Article  PubMed  Google Scholar 

  47. Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology. 2012;62(3):1308–21.

    Article  CAS  PubMed  Google Scholar 

  48. Tang B, Jia H, Kast RJ, Thomas EA. Epigenetic changes at gene promoters in response to immune activation in utero. Brain Behav Immun. 2013;30:168–75.

    Article  CAS  PubMed  Google Scholar 

  49. Connor CM, Dincer A, Straubhaar J, Galler JR, Houston IB, Akbarian S. Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophr Res. 2012;140:175–84.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mackowiak M, Bator E, Latusz J, Mordalska P, Wedzony K. Prenatal MAM administration affects histone H3 methylation in postnatal life in the rat medial prefrontal cortex. Eur Neuropsychopharmacol. 2014;24:271–89.

    Article  CAS  PubMed  Google Scholar 

  51. Blaze J, Asok A, Roth TL. Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC. Stress. 2015;18:607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Moura AC, da Silva IR, Reinaldo G, Dani C, Elsner VR, Giovenardi M. Global histone H4 acetylation in the olfactory bulb of lactating rats with different patterns of maternal behavior. Cell Mol Neurobiol. 2016;36:1209–13.

    Article  PubMed  Google Scholar 

  53. Bagot RC, Zhang TY, Wen X, Nguyen TT, Nguyen HB, Diorio J, et al. Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci U S A. 2012;109(Suppl 2):17200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology. 1996;14:87–96.

    Article  CAS  PubMed  Google Scholar 

  55. Jann MW. Clozapine. Pharmacotherapy. 1991;11:179–95.

    CAS  PubMed  Google Scholar 

  56. Kerwin R, Taylor D. Antipsychotics—a review of the current status and clinical potential. CNS Drugs. 1996;6:71–82.

    Article  CAS  Google Scholar 

  57. Li J, Guo Y, Schroeder FA, Youngs RM, Schmidt TW, Ferris C, et al. Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling. J Neurochem. 2004;90:1117–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonito-Oliva A, Sodersten E, Spigolon G, Hu X, Hellysaz A, Falconi A, et al. Differential regulation of the phosphorylation of Trimethyl-lysine27 histone H3 at serine 28 in distinct populations of striatal projection neurons. Neuropharmacology. 2016;107:89–99.

    Article  CAS  PubMed  Google Scholar 

  59. Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL, et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci. 2012;15:1245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J Psychiatr Res. 2013;47:1204–14.

    Article  PubMed  Google Scholar 

  61. Sommer IE, Slotema CW, Daskalakis ZJ, Derks EM, Blom JD, van der Gaag M. The treatment of hallucinations in schizophrenia spectrum disorders. Schizophr Bull. 2012;38:704–14.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci. 2004;24:5603–10.

    Article  CAS  PubMed  Google Scholar 

  63. Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov. 2008;7:854–68.

    Article  CAS  PubMed  Google Scholar 

  64. Akbarian S. Epigenetic mechanisms in schizophrenia. Dialogues Clin Neurosci. 2014;16:405–17.

    PubMed  PubMed Central  Google Scholar 

  65. Citrome L. Schizophrenia and valproate. Psychopharmacol Bull. 2003;37(Suppl 2):74–88.

    PubMed  Google Scholar 

  66. Wassef AA, Dott SG, Harris A, Brown A, O'Boyle M, Meyer 3rd WJ, et al. Randomized, placebo-controlled pilot study of divalproex sodium in the treatment of acute exacerbations of chronic schizophrenia. J Clin Psychopharmacol. 2000;20:357–61.

    Article  CAS  PubMed  Google Scholar 

  67. Wassef AA, Hafiz NG, Hampton D, Molloy M. Divalproex sodium augmentation of haloperidol in hospitalized patients with schizophrenia: clinical and economic implications. J Clin Psychopharmacol. 2001;21:21–6.

    Article  CAS  PubMed  Google Scholar 

  68. Casey DE, Daniel DG, Tamminga C, Kane JM, Tran-Johnson T, Wozniak P, et al. Divalproex ER combined with olanzapine or risperidone for treatment of acute exacerbations of schizophrenia. Neuropsychopharmacology. 2009;34:1330–8.

    Article  CAS  PubMed  Google Scholar 

  69. Casey DE, Daniel DG, Wassef AA, Tracy KA, Wozniak P, Sommerville KW. Effect of divalproex combined with olanzapine or risperidone in patients with an acute exacerbation of schizophrenia. Neuropsychopharmacology. 2003;28:182–92.

    Article  CAS  PubMed  Google Scholar 

  70. Citrome L. Adjunctive lithium and anticonvulsants for the treatment of schizophrenia: what is the evidence? Expert Rev Neurother. 2009;9:55–71.

    Article  CAS  PubMed  Google Scholar 

  71. Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett. 2009;280:211–21.

    Article  CAS  PubMed  Google Scholar 

  72. Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010:18.

    Article  Google Scholar 

  73. Tang B, Dean B, Thomas EA. Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl Psychiatry. 2011;1:e64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen Y, Dong E, Grayson DR. Analysis of the GAD1 promoter: trans-acting factors and DNA methylation converge on the 5′ untranslated region. Neuropharmacology. 2011;60:1075–87.

    Article  CAS  PubMed  Google Scholar 

  75. Schroeder FA, Lewis MC, Fass DM, Wagner FF, Zhang YL, Hennig KM, et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS One. 2013;8:e71323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kwon B, Houpt TA. Phospho-acetylation of histone H3 in the amygdala after acute lithium chloride. Brain Res. 2010;1333:36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Thomas Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thomas, E.A. (2017). Histone Posttranslational Modifications in Schizophrenia. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_13

Download citation

Publish with us

Policies and ethics