Skip to main content

Abstract

This chapter presents an extensive overview of aspects involved in the thriving field of systems pharmacology. The three main directions along which network- and pathway-based analysis methods can contribute in systems pharmacology are spotlighted. Current approaches for the characterization of drugs mechanism of action, including the elucidation of mechanisms through which disease phenotypes dysregulate biological processes are first discussed. Subsequently, the latest research work done in systems pharmacology and polypharmacology toward the identification of novel drug targets, as well as in optimizing drug combinations for more efficient therapies, is surveyed. Within this context, the benefits of integrating evidence from multiple biological scales are examined, and the most popular databases used to store various biological data are provided. Drug repositioning is another direction along which pathway analysis is bound to bring significant contributions. An overview of drug repositioning approaches based on molecular and phenotypic profiles is presented. Subsequently, the main aspects involved in systems pharmacology applications for in silico drug side effect modeling and prediction are reviewed. Finally, current challenges and future considerations for pathway analysis and systems pharmacology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambesi-Impiombato A, Diego d Bernardo A (2005) Computational biology and drug discovery: from single-target to network drugs. Curr Bioinf 1:3–13

    Google Scholar 

  • Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery: miniperspective. J Med Chem 57:7874–7887

    Article  Google Scholar 

  • Antman E, Weiss S, Loscalzo J (2012) Systems pharmacology, pharmacogenetics, and clinical trial design in network medicine. Wiley Interdisc Rev Syst Biol Med 4:367–383

    Article  Google Scholar 

  • Arrell DK, Terzic A (2010) Network systems biology for drug discovery. Clin Pharmacol Ther 88:120–125

    Article  Google Scholar 

  • Atias N, Sharan R (2011) An algorithmic framework for predicting side effects of drugs. J Comput Biol 18:207–218

    Article  MathSciNet  Google Scholar 

  • Bai JP, Abernethy DR (2013) Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu Rev Pharmacol Toxicol 53:451–473

    Article  Google Scholar 

  • Bansal M, Della Gatta G, Di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22:815–822

    Article  Google Scholar 

  • Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  Google Scholar 

  • Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PC (2012) Network physiology reveals relations between network topology and physiological function. Nat Comm 3:702

    Article  Google Scholar 

  • Bauer-Mehren A, Van Mullingen EM, Avillach P et al (2012) Automatic filtering and substantiation of drug safety signals. PLoS Comput Biol 8:e1002457

    Article  Google Scholar 

  • Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Bioinformatics 25:2466–2472

    Article  Google Scholar 

  • Bezerianos A, Maraziotis IA (2008) Computational models reconstruct gene regulatory networks. Mol BioSyst 4:993–1000

    Article  Google Scholar 

  • Bisgin H, Liu Z, Fang H, Kelly R, Xu X, Tong W (2014) A phenome-guided drug repositioning through a latent variable model BMC. Bioinformatics 15:1

    Google Scholar 

  • Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 13:297

    Google Scholar 

  • Bowes J, Brown AJ, Hamon J, Jarolimek W, Sridhar A, Waldron G, Whitebread S (2012) Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat Rev Drug Discov 11:909–922

    Article  Google Scholar 

  • Brouwers L, Iskar M, Zeller G, Van Noort V, Bork P (2011) Network neighbors of drug targets contribute to drug side-effect similarity. PLoS ONE 6:e22187

    Article  Google Scholar 

  • Brown AS, Kong SW, Kohane IS, Patel CJ (2016) ksRepo: a generalized platform for computational drug repositioning. BMC Bioinf 17:1

    Article  Google Scholar 

  • Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321:263–266

    Article  Google Scholar 

  • Cao DS, Xiao N, Li YJ, Zeng WB et al (2015) Integrating multiple evidence sources to predict adverse drug reactions based on a systems pharmacology model. CPT: Pharmacometr Syst Pharmacol 4:498–506

    Google Scholar 

  • Chen X, Xu J, Huang B, Li J et al (2011) A sub-pathway-based approach for identifying drug response principal network. Bioinformatics 27:649–654

    Article  Google Scholar 

  • Chen X, Liu MX, Yan GY (2012) Drug–target interaction prediction by random walk on the heterogeneous network. Mol BioSyst 8:1970–1978

    Article  Google Scholar 

  • Chen X, Yan CC, Zhang X, Zhang X, Dai F, Yin J, Zhang Y (2015) Drug–target interaction prediction: databases, web servers and computational models. Briefings Bioinf bbv066

    Google Scholar 

  • Cheng F, Liu C, Jiang J, Lu W et al (2012a) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8:e1002503

    Article  Google Scholar 

  • Cheng F, Zhou Y, Li W, Liu G, Tang Y (2012b) Prediction of chemical-protein interactions network with weighted network-based inference method. PLoS ONE 7:e41064

    Article  Google Scholar 

  • Csermely P, Korcsmaros T, Kiss HJ, London G, Nussinov R (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408

    Article  Google Scholar 

  • Daminelli S, Haupt VJ, Reimann M, Schroeder M (2012) Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network. Integr Biol 4:778–788

    Article  Google Scholar 

  • DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33

    Article  Google Scholar 

  • Esserink M (2016) Science Magazine. doi:10.1126/science.aaf4017, http://www.sciencemag.org/news/2016/02/french-company-bungled-clinical-trial-led-death-and-illness-report-says. Retrieved Oct 2016

  • Fan S, Geng Q, Pan Z, Li X, Tie L, Pan Y, Li X (2012) Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol 6:152

    Article  Google Scholar 

  • FDA (2016) Table of pharmacogenomic biomarkers in drug labeling. http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378.htm. Retrieved 5 Oct 2016

  • Ganter B, Tugendreich S, Pearson CI et al (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol 119:219–244

    Article  Google Scholar 

  • Gardner TS, Di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301:102–105

    Article  Google Scholar 

  • Gene Ontology Consortium (2013) Gene ontology annotations and resources. Nucleic Acids Res 41(D1):D530–D535

    Google Scholar 

  • Glaab E, Baudot A, Krasnogor N, Valencia A (2010) Extending pathways and processes using molecular interaction networks to analyze cancer genome data. BMC Bioinf 11:1

    Article  Google Scholar 

  • Gottlieb A, Stein GY, Ruppin E, Sharan R (2011) PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 7:496

    Article  Google Scholar 

  • Graham DJ, Campen D, Hui R et al (2005) Risk of acute myocardial infarction and sudden cardiac death in patients treated with cyclo-oxygenase 2 selective and non-selective non-steroidal anti-inflammatory drugs: nested case-control study. Lancet 365:475–481

    Article  Google Scholar 

  • Guney E, Menche J, Vidal M, Barábasi AL (2016). Network-based in silico drug efficacy screening. Nat Commun 7

    Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  MathSciNet  Google Scholar 

  • Hornberg JJ, Laursen M, Brenden N, Persson M, Thougaard AV, Toft DB, Mow T (2014) Exploratory toxicology as an integrated part of drug discovery. Part I: why and how. Drug Discov Today 19:1131–1136

    Article  Google Scholar 

  • Huang H, Nguyen T, Ibrahim S, Shantharam S, Yue Z, Chen JY (2015) DMAP: a connectivity map database to enable identification of novel drug repositioning candidates. BMC Bioinf 16(Suppl 13):S4

    Article  Google Scholar 

  • Hutchinson L, Kirk R (2011) High drug attrition rates—where are we going wrong? Nat Rev Clin Oncol 8:189–190

    Article  Google Scholar 

  • Hwang WC, Zhang A, Ramanathan M (2008) Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery. Clin Pharmacol Ther 84:563–572

    Article  Google Scholar 

  • Hwang S, Kim CY, Ji SG et al (2016) Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa. Sci Rep 6

    Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Human Genet 2:343–372

    Article  Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl 1):S233–S240

    Article  Google Scholar 

  • Iorio F, Bosotti R, Scacheri E et al (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Nat Acad Sci 107:14621–14626

    Article  Google Scholar 

  • Iorio F, Shrestha RL, Levin N, Boilot V, Garnett MJ, Saez-Rodriguez J, Draviam VM (2015) A semi-supervised approach for refining transcriptional signatures of drug response and repositioning predictions. PLoS ONE 10:e0139446

    Article  Google Scholar 

  • Isik Z, Baldow C, Cannistraci CV, Schroeder M (2015) Drug target prioritization by perturbed gene expression and network information. Sci Rep 5

    Google Scholar 

  • Iskar M, Zeller G, Blattmann P et al (2013) Characterization of drug-induced transcriptional modules: towards drug repositioning and functional understanding. Mol Syst Biol 9:662

    Article  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  Google Scholar 

  • Jiang W, Chen X, Liao M et al (2012) Identification of links between small molecules and miRNAs in human cancers based on transcriptional responses. Sci Rep 2:282

    Google Scholar 

  • Jin G, Fu C, Zhao H, Cui K, Chang J, Wong ST (2012) A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res 72:33–44

    Article  Google Scholar 

  • Juan-Blanco T, Duran-Frigola M, Aloy P (2015) IntSide: a web server for the chemical and biological examination of drug side effects. Bioinformatics 31:612–613

    Article  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res gkv1070

    Google Scholar 

  • Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375

    Article  Google Scholar 

  • Kibble M, Khan SA, Saarinen N, Iorio F, Saez-Rodriguez J, Mäkelä S, Aittokallio T (2016) Transcriptional response networks for elucidating mechanisms of action of multitargeted agents. Drug Discov Today 21:1063–1075

    Google Scholar 

  • Kuang Q, Wang M, Li R, Dong Y, Li Y, Li M (2014) A systematic investigation of computation models for predicting adverse drug reactions (ADRs). PLoS ONE 9:e105889

    Article  Google Scholar 

  • Kuhn M, Letunic I, Jensen LJ, Bork P (2015) The SIDER database of drugs and side effects. Nucleic Acids Res gkv1075

    Google Scholar 

  • Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  Google Scholar 

  • Lázár V, Nagy I, Spohn R et al (2014) Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 5

    Google Scholar 

  • Lee S, Lee KH, Song M, Lee D (2011) Building the process-drug–side effect network to discover the relationship between biological processes and side effects. BMC Bioinf 12:1

    Article  Google Scholar 

  • Lee HS, Bae T, Lee JH et al (2012) Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug. BMC Syst Biol 6:80

    Article  Google Scholar 

  • Li C, Shang D, Wang Y, Li J et al (2012) Characterizing the network of drugs and their affected metabolic subpathways. PLoS ONE 7:e47326

    Article  Google Scholar 

  • Li ZC, Huang MH, Zhong WQ, Liu ZQ, Xie Y, Dai Z, Zou XY (2015) Identification of drug-target interaction from interactome network with “guilt-by-association” principle and topology features. Bioinf btv695

    Google Scholar 

  • Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z (2016) A survey of current trends in computational drug repositioning. Briefings Bioinf 17:2–12

    Article  Google Scholar 

  • Liu M, Wu Y, Chen Y et al (2012) Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. J Am Med Inf Assoc 19:e28–e35

    Article  Google Scholar 

  • Liu Z, Borlak J, Tong W (2014) Deciphering miRNA transcription factor feed-forward loops to identify drug repurposing candidates for cystic fibrosis. Genome Med 6:1

    Article  Google Scholar 

  • Liu X, Gao Y, Peng J et al (2015) TarPred: a web application for predicting therapeutic and side effect targets of chemical compounds. Bioinformatics btv099

    Google Scholar 

  • Lorberbaum T, Nasir M, Keiser MJ, Vilar S, Hripcsak G, Tatonetti NP (2015) Systems pharmacology augments drug safety surveillance. Clin Pharmacol Ther 97:151–158

    Article  Google Scholar 

  • Lorberbaum T, Sampson KJ, Woosley RL, Kass RS, Tatonetti NP (2016) An integrative data science pipeline to identify novel drug interactions that prolong the QT interval. Drug Saf 39:433–441

    Article  Google Scholar 

  • Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361–367

    Google Scholar 

  • Luo H, Chen J, Shi L et al (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome. Nucleic Acids Res gkr299

    Google Scholar 

  • Ma’ayan A, Jenkins SL, Goldfarb J, Iyengar R (2007) Network analysis of FDA approved drugs and their targets. Mount Sinai J Med J Transl Personalized Med 74:27–32

    Article  Google Scholar 

  • Maraziotis I, Dragomir A, Bezerianos A (2006) Gene networks inference from expression data using a recurrent neuro-fuzzy approach. In IEEE engineering in medicine and biology 27th annual conference 2006, 17 Jan IEEE, pp 4834–4837

    Google Scholar 

  • Maraziotis IA, Dragomir A, Bezerianos A (2007) Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks. IET Syst Biol 1:41–50

    Article  Google Scholar 

  • Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA (2013) Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 18:495–501

    Article  Google Scholar 

  • Mitsopoulos C, Schierz AC, Workman P, Al-Lazikani B (2015) Distinctive behaviors of druggable proteins in cellular networks. PLoS Comput Biol 11:e1004597

    Article  Google Scholar 

  • Mizutani S, Pauwels E, Stoven V, Goto S, Yamanishi Y (2012) Relating drug–protein interaction network with drug side effects. Bioinformatics 28:i522–i528

    Article  Google Scholar 

  • Nacher JC, Schwartz JM (2008) A global view of drug-therapy interactions. BMC Pharmacol 8:5

    Article  Google Scholar 

  • Napolitano F, Sirci F, Carella D, Di Bernardo D (2016) Drug-set enrichment analysis: a novel tool to investigate drug mode of action. Bioinformatics 32:235–241

    Google Scholar 

  • Nishimura D (2001) BioCarta. Biotech Soft Internet Rep Comput Soft J Sci 2:117–120

    Article  Google Scholar 

  • Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New Engl J Med 356:2457–2471

    Article  Google Scholar 

  • Pan Y, Cheng T, Wang Y, Bryant SH (2014) Pathway analysis for drug repositioning based on public database mining. J Chem Inf Model 54:407–418

    Article  Google Scholar 

  • Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24:805–815

    Article  Google Scholar 

  • Pauwels E, Stoven V, Yamanishi Y (2011) Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinf 12:1

    Article  Google Scholar 

  • Pritchard JR, Bruno PM, Hemann MT, Lauffenburger DA (2013) Predicting cancer drug mechanisms of action using molecular network signatures. Mol BioSyst 9:1604–1619

    Article  Google Scholar 

  • Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–47

    Article  Google Scholar 

  • Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  Google Scholar 

  • Scheiber J, Jenkins JL, Sukuru SCK et al (2009) Mapping adverse drug reactions in chemical space. J Med Chem 52:3103–3107

    Article  Google Scholar 

  • Schotland P, Bojunga N, Zien A, Trame MN, Lesko LJ (2016) Improving drug safety with a systems pharmacology approach. Eur J Pharm Sci 94:84–92

    Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat Acad Sci 102:15545–15550

    Article  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S et al (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res gku1003

    Google Scholar 

  • Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M (2015) STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res gkv1277

    Google Scholar 

  • Trame MN, Biliouris, K, Lesko LJ, Mettetal JT (2016) Systems pharmacology to predict drug safety in drug development. Eur J Pharm Sci 94:93–95

    Google Scholar 

  • Turner RM, Park BK, Pirmohamed M (2015) Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdisc Rev Syst Biol Med 7:221–241

    Article  Google Scholar 

  • Vogt I, Prinz J, Campillos M (2014) Molecularly and clinically related drugs and diseases are enriched in phenotypically similar drug-disease pairs. Genome Med 6:1

    Article  Google Scholar 

  • Von Eichborn J, Murgueitio MS, Dunkel M, Koerner S, Bourne PE, Preissner R (2011) PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res 39(suppl 1):D1060–D1066

    Article  Google Scholar 

  • Vrahatis, AG, Balomenos P, Tsakalidis AK, Bezerianos A (2016a) DEsubs: an R package for flexible identification of differentially expressed subpathways using RNA-seq experiments. Bioinformatics btw544

    Google Scholar 

  • Vrahatis AG, Dimitrakopoulou K, Balomenos P, Tsakalidis AK, Bezerianos A (2016b) CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis. Bioinformatics 32:884–892

    Google Scholar 

  • Wallach I, Jaitly N, Lilien R (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS ONE 5:e12063

    Article  Google Scholar 

  • Wang X, Thijssen B, Yu H (2013) Target essentiality and centrality characterize drug side effects. PLoS Comput Biol 9:e1003119

    Article  Google Scholar 

  • Wang Z, Clark NR, Ma’ayan A (2016) Drug induced adverse events prediction with the LINCS L1000 data. Bioinformatics btw168

    Google Scholar 

  • Waring MJ, Arrowsmith J, Leach AR et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486

    Article  Google Scholar 

  • Woo JH, Shimoni Y, Yang WS et al (2015) Elucidating compound mechanism of action by network perturbation analysis. Cell 162:441–451

    Article  Google Scholar 

  • Wu Z, Wang Y, Chen L (2013) Network-based drug repositioning. Mol BioSyst 9:1268–1281

    Article  Google Scholar 

  • Xie L, Li J, Xie L, Bourne PE (2009) Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol 5:e1000387

    Article  Google Scholar 

  • Xie L, Xie L, Kinnings SL, Bourne PE (2012) Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu Rev Pharmacol Toxicol 52:361–379

    Article  Google Scholar 

  • Xie L, Ge X, Tan H et al (2014) Towards structural systems pharmacology to study complex diseases and personalized medicine. PLoS Comput Biol 10:e1003554

    Article  Google Scholar 

  • Xing H, Gardner TS (2006) The mode-of-action by network identification (MNI) algorithm: a network biology approach for molecular target identification. Nat Protoc 1:2551–2554

    Article  Google Scholar 

  • Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24:i232–i240

    Article  Google Scholar 

  • Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254

    Article  Google Scholar 

  • Yamanishi Y, Pauwels E, Kotera M (2012) Drug side-effect prediction based on the integration of chemical and biological spaces. J Chem Inf Model 52:3284–3292

    Article  Google Scholar 

  • Yamanishi Y, Kotera M, Moriya Y, Sawada R, Kanehisa M, Goto S (2014) DINIES: drug–target interaction network inference engine based on supervised analysis. Nucleic Acids Res 42:W39–W45

    Article  Google Scholar 

  • Yang L, Agarwal P (2011) Systematic drug repositioning based on clinical side-effects. PLoS ONE 6:e28025

    Article  Google Scholar 

  • Yang K, Bai H, Ouyang Q, Lai L, Tang C (2008) Finding multiple target optimal intervention in disease-related molecular network. Mol Syst Biol 4:228

    Article  Google Scholar 

  • Ye H, Liu Q, Wei J (2014) Construction of drug network based on side effects and its application for drug repositioning. PLoS ONE 9:e87864

    Article  Google Scholar 

  • Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug—target network. Nat Biotechnol 25:1119–1126

    Article  Google Scholar 

  • Yuan Q, Gao J, Wu D, Zhang S, Mamitsuka H, Zhu S (2016) DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank. Bioinformatics 32:i18–i27

    Article  Google Scholar 

  • Zhao S, Iyengar R (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 52:505

    Article  Google Scholar 

  • Zhao S, Li S (2012) A co-module approach for elucidating drug–disease associations and revealing their molecular basis. Bioinformatics 28:955–961

    Article  Google Scholar 

  • Zhao S, Nishimura T, Chen Y et al (2013) Systems pharmacology of adverse event mitigation by drug combinations. Sci Transl Med 5:206ra140–206ra140

    Google Scholar 

  • Zhou H, Gao M, Skolnick J (2015) Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Sci Rep 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Bezerianos .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Bezerianos, A., Dragomir, A., Balomenos, P. (2017). Networks and Pathways in Systems Pharmacology. In: Computational Methods for Processing and Analysis of Biological Pathways. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-53868-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53868-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53867-9

  • Online ISBN: 978-3-319-53868-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics