Skip to main content

FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10164))

Abstract

We present a framework for coupled multiphysics in computational fluid dynamics, targeting massively parallel systems. Our strategy is based on general problem formulations in the form of partial differential equations and the finite element method, which open for automation, and optimization of a set of fundamental algorithms. We describe these algorithms, including finite element matrix assembly, adaptive mesh refinement and mesh smoothing; and multiphysics coupling methodologies such as unified continuum fluid-structure interaction (FSI), and aeroacoustics by coupled acoustic analogies. The framework is implemented as FEniCS open source software components, optimized for massively parallel computing. Examples of applications are presented, including simulation of aeroacoustic noise generated by an airplane landing gear, simulation of the blood flow in the human heart, and simulation of the human voice organ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deliverable d2.4 incompressible flow model for fluid-structure-acoustic coupling. EUNISON FP7 FET project documentation

    Google Scholar 

  2. Eunison - extensive unified-domain simulation of the human voice, eu-fet project. http://eunison.eu

  3. Bazilevs, Y., Calo, V., Cottrell, J., Hughes, T., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Meth. Appl. Mech. Eng. 197(1), 173–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Escobar, M.: Finite element simulation of flow-induced noise using lighthills acoustic analogy. Ph.D. thesis, Universität Erlangen-Nürnberg (2007)

    Google Scholar 

  5. Williams, J.E.F., Hawkings, D.: Sound generation by turbulence and surfaces in arbitrary motions. Phil. Trans. Roy. Soc. A264, 321–342 (1969)

    Article  MATH  Google Scholar 

  6. Hansbo, P.: A crank-nicolson type space-time finite element method for computing on moving meshes. J. Comput. Phys. 159, 274–289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoffman, J., Jansson, J., de Abreu, R.V.: Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation. Comput. Meth. Appl. Mech. Eng. 200(37–40), 2758–2767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoffman, J., Jansson, J., Jansson, N., De Abreu, R.V.: Towards a parameter-free method for high reynolds number turbulent flow simulation based on adaptive finite element approximation. Comput. Meth. Appl. Mech. Eng. 288, 60–74 (2015)

    Article  MathSciNet  Google Scholar 

  9. Hoffman, J., Jansson, J., Stöckli, M.: Unified continuum modeling of fluid-structure interaction. Math. Mod. Meth. Appl. S. 21(3), 491–513 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoffman, J., Johnson, C.: A new approach to computational turbulence modeling. Comput. Meth. Appl. Mech. Eng. 195(23), 2865–2880 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoffman, J., Johnson, C.: Computational Turbulent Incompressible Flow. Applied Mathematics: Body and Soul, vol. 4. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  12. Jansson, N.: High performance adaptive finite element methods: with applications in aerodynamics. Ph.D. thesis, KTH Royal Institute of Technology (2013)

    Google Scholar 

  13. Jansson, N.: Optimizing sparse matrix assembly in finite element solvers with one-sided communication. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR 2012. LNCS, vol. 7851, pp. 128–139. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38718-0_15

    Chapter  Google Scholar 

  14. Jansson, N., Hoffman, J., Jansson, J.: Framework for massively parallel adaptive finite element computational fluid dynamics on tetrahedral meshes. SIAM J. Sci. Comput. 34(1), C24–C41 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Labrosse, M.R., Lobo, K., Beller, C.J.: Structural analysis of the natural aortic valve in dynamics: from unpressurized to physiologically loaded. J. Biomech. 43(10), 1916–1922 (2010)

    Article  Google Scholar 

  16. Larsson, D., Spuhler, J.H., Nordenfur, T., Hoffman, J., Colarieti-Tosti, M. Gao, H., Larsson, M.: Patient-specific flow simulation of the left ventricle from 4d echocardiography - feasibility and robustness evaluation. In: 2015 IEEE International Ultrasonics Symposium (2015)

    Google Scholar 

  17. Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2), 1–28 (2010)

    Article  MathSciNet  Google Scholar 

  18. Spühler, J.H., Jansson, J., Jansson, N., Hoffman, J.: A finite element framework for high performance computer simulation of blood flow in the left ventricle of the human heart. Technical report 34, KTH, Computational Science and Technology (CST) (2015)

    Google Scholar 

  19. Thubrikar, M.: The Aortic Valve. CRC Press, Boca Raton (1990)

    Google Scholar 

  20. Zawodny, N., Liu, F., Yardibi, T., Cattafesta, L., Khorrami, M., Neuhart, D., Van de Ven, T.: A comparative study of a 1/4-scale gulfstream g550 aircraft nose gear model. In: Proceedings of 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference) (2009)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the European Research Council, the EU-FET grant EUNISON 308874, the Swedish Research Council, the Swedish Foundation for Strategic Research, the Swedish Energy Agency, the Basque Excellence Research Center (BERC 2014-2017) program by the Basque Government, the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323 and the Project of the Spanish Ministry of Economy and Competitiveness with reference MTM2013-40824. We acknowledge the Swedish National Infrastructure for Computing (SNIC) at PDC – Center for High-Performance Computing for awarding us access to the supercomputer resources Beskow. Initial volume meshes have been generated with ANSA from Beta-CAE Systems S. A., who generously provided an academic license for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Hoffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hoffman, J. et al. (2017). FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics