Skip to main content

A Partitioned Methodology for Conjugate Heat Transfer on Dynamic Structures

  • Conference paper
  • First Online:
High-Performance Scientific Computing (JHPCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10164))

  • 1012 Accesses

Abstract

A partitioned coupling approach for conjugate heat transfer applications is presented. The coupling scheme is based on the extension of the parallel algebraic domain composition method already validated in fluid-structure interactions problems for thermal coupling. The method alters the original Dirichlet-Neumann approach enforcing the boundary conditions over the subdomains through matrix operations. The algorithm is tested on two benchmark cases with conjugate heat transfer: flow over a heated cylinder and flow over a flat-plate. The results indicate good agreement with previous research and encourages its application for large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houzeaux, G., Cajas, J.C., Eguzkitza, B., Vázquez, M.: Parallel implementation of domain composition methods (2015)

    Google Scholar 

  2. Samaniego, C., Houzeaux, G., Samaniego, E., Vázquez, M.: Parallel embedded boundary methods for fluid and rigid-body interaction. Comput. Methods Appl. Mech. Eng. 290, 387–419 (2015)

    Article  MathSciNet  Google Scholar 

  3. Houzeaux, G., Principe, J.: A variational subgrid scale model for transient incompressible flows. Int. J. Comput. Fluid Dyn. 22(3), 135–152 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Houzeaux, G., Aubry, R., Vázquez, M.: Extension of fractional step techniques for incompressible flows: The preconditioned orthomin (1) for the pressure schur complement. Comput. Fluids 44(1), 297–313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Uekermann, B., Cajas, J.C., Gatzhammer, B., Houzeaux, G., Mehl, M., Vázquez, M.: Towards partitioned fluid-structure interaction on massively parallel systems. In: Proceedings of WCCM XI/ECCM V/ECFD VI, Barcelona (2014)

    Google Scholar 

  6. Cajas, J.C., Houzeaux, G., Yáñez, D.J., Mier-Torrecilla, M..: Shape project vortex bladeless: parallel multi-code coupling for fluid-structure interaction in wind energy generation (2016)

    Google Scholar 

  7. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43(1), 61–72 (2008)

    Article  MATH  Google Scholar 

  8. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Vis. Sci. 13(7), 331–340 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kuzmin, D.: A guide to numerical methods for transport equations. University Erlangen-Nuremberg (2010)

    Google Scholar 

  10. Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and Theory, vol. 34. Springer, Heidelberg (2005)

    Book  MATH  Google Scholar 

  11. Vessakosol, P., Charoensuk, J.: Numerical analysis of heat transfer and flow field around cross-flow heat exchanger tube with fouling. Appl. Therm. Eng. 30(10), 1170–1178 (2010)

    Article  Google Scholar 

  12. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent, N.R.: HPCTOOLKIT: Tools for performance analysis of optimized parallel programs. Concurrency Comput. Pract. Experience 22(6), 685–701 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Zavala-Aké .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zavala-Aké, M., Mira, D., Vázquez, M., Houzeaux, G. (2017). A Partitioned Methodology for Conjugate Heat Transfer on Dynamic Structures. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics