Skip to main content

Parallel Adaptive Integration in High-Performance Functional Renormalization Group Computations

  • Conference paper
  • First Online:
High-Performance Scientific Computing (JHPCS 2016)

Abstract

The conceptual framework provided by the functional Renormalization Group (fRG) has become a formidable tool to study correlated electron systems on lattices which, in turn, provided great insights to our understanding of complex many-body phenomena, such as high-temperature superconductivity or topological states of matter. In this work we present one of the latest realizations of fRG which makes use of an adaptive numerical quadrature scheme specifically tailored to the described fRG scheme. The final result is an increase in performance thanks to improved parallelism and scalability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Ref. [7] for a more detailed derivation and an example application of the scheme.

  2. 2.

    For a review of Clenshaw-Curtis and a comparison with Gauss quadrature rules we refer to the excellent review [13].

  3. 3.

    We use the conventional notation indicating with the capital symbol the integral (\(\varPhi \)) and with the corresponding small cap symbol (\(\phi \)) its integrand.

  4. 4.

    Notice that the fRG flow in the current setup starts at high \(\varOmega \) values and successively reduces this scale during the flow.

  5. 5.

    The granularity of the affinity is set to ’compact,core,1’.

References

  1. Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V., Schönhammer, K.: Functional renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 84, 299–352 (2012)

    Article  Google Scholar 

  2. Platt, C., Hanke, W., Thomale, R.: Functional renormalization group for multi-orbital fermi surface instabilities. Adv. Phys. 62(4–6), 453–562 (2013)

    Article  Google Scholar 

  3. Zanchi, D., Schulz, H.J.: Weakly correlated electrons on a square lattice: a renormalization group theory. EPL (Europhysics Letters) 44(2), 235 (1998)

    Article  Google Scholar 

  4. Salmhofer, M., Honerkamp, C.: Fermionic renormalization group flows: technique and theory. Progress Theoret. Phys. 105(1), 1–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Husemann, C., Salmhofer, M.: Efficient parametrization of the vertex function, \(\Omega \) scheme, and the \(t,{t}^{^{\prime }}\) hubbard model at van hove filling. Phys. Rev. B 79, 195125 (2009)

    Article  Google Scholar 

  6. Wang, W.S., Xiang, Y.Y., Wang, Q.H., Wang, F., Yang, F., Lee, D.H.: Functional renormalization group and variational monte carlo studies of the electronic instabilities in graphene near \(\frac{1}{4}\) doping. Phys. Rev. B 85, 035–414 (2012)

    Google Scholar 

  7. Lichtenstein, J., Sánchez de la Peña, D., Rohe, D., Di Napoli, E., Honerkamp, C., Maier, S.A.: High-performance functional renormalization group calculations for interacting fermions. arXiv:1604.06296, April 2016

  8. Berntsen, J., Espelid, T.O., Genz, A.: Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals. ACM Trans. Math. Softw. 17(4), 452–456 (1991)

    Article  MATH  Google Scholar 

  9. DApuzzo, M., Lapegna, M., Murli, A.: Practical aspects and experiences - Scalability and load balancing in adaptive algorithms for multidimensional integration. Parallel Comput. 23(8), 1199–1210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for multidimensional quadrature on distributed memory architectures. Euro-Par 1999 Parallel Processing (1999)

    Google Scholar 

  11. Cools, R.: Advances in multidimensional integration. J. Comput. Appl. Math. 149(1), 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krommer, A.R., Ueberhuber, C.W. (eds.): Numerical Integration on Advanced Computer Systems. LNCS, vol. 848. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  13. Trefethen, L.N.: Is gauss quadrature better than clenshaw-curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berntsen, J.: Practical error estimation in adaptive multidimensional quadrature routines. J. Comput. Appl. Math. 25(3), 327–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support from the Jülich Aachen Research Alliance–High Performance Computing, and the Deutsche Forschungsgemeinschaft (DFG) through grants GSC 111, RTG 1995 and SPP 1459 is gratefully acknowledged. We are thankful to the Jülich Supercomputing Centre (JSC) for the computing time made available to perform the numerical tests. Special thanks to JSC Guest Student Programme which sponsored the research internship of one of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Lichtenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lichtenstein, J., Winkelmann, J., Sánchez de la Peña, D., Vidović, T., Di Napoli, E. (2017). Parallel Adaptive Integration in High-Performance Functional Renormalization Group Computations. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics