Skip to main content

Ab Initio Description of Optoelectronic Properties at Defective Interfaces in Solar Cells

  • Conference paper
  • First Online:
High-Performance Scientific Computing (JHPCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10164))

Abstract

In order to optimize the optoelectronic properties of novel solar cell architectures, such as the amorphous-crystalline interface in silicon heterojunction devices, we calculate and analyze the local microscopic structure at this interface and in bulk a-Si:H, in particular with respect to the impact of material inhomogeneities. The microscopic information is used to extract macroscopic material properties, and to identify localized defect states, which govern the recombination properties encoded in quantities such as capture cross sections used in the Shockley-Read-Hall theory. To this end, atomic configurations for a-Si:H and a-Si:H/c-Si interfaces are generated using molecular dynamics. Density functional theory calculations are then applied to these configurations in order to obtain the electronic wave functions. These are analyzed and characterized with respect to their localization and their contribution to the (local) density of states. GW calculations are performed for the a-Si:H configuration in order to obtain a quasi-particle corrected absorption spectrum. The results suggest that the quasi-particle corrections can be approximated through a scissors shift of the Kohn-Sham energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aeberhard, U., Czaja, P., Ermes, M., Pieters, B., Chistiakova, G., Bittkau, K., Richter, A., Ding, K., Giusepponi, S., Celino, M.: Towards a multi-scale approach to the simulation of silicon hetero-junction solar cells. J. Green Eng. 5(4), 11–32 (2016)

    Article  Google Scholar 

  2. Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72(4), 2384–2393 (1980)

    Article  Google Scholar 

  3. Becke, A.D., Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92(9), 5397–5403 (1990)

    Article  Google Scholar 

  4. CP2K. http://www.cp2k.org/

  5. Deslippe, J., Samsonidze, G., Strubbe, D.A., Jain, M., Cohen, M.L., Louie, S.G.: BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183(6), 1269–1289 (2012)

    Article  Google Scholar 

  6. Ehrenreich, H.: The Optical Properties of Solids. Academic, New York (1965)

    Google Scholar 

  7. Favre, M., Curtins, H., Shah, A.: Study of surface/interface and bulk defect density in a-Si: H by means of photothermal de ection spectroscopy and photoconductivity. J. Non-Cryst. Solids 97, 731–734 (1987)

    Article  Google Scholar 

  8. George, B.M., Behrends, J., Schnegg, A., Schulze, T.F., Fehr, M., Korte, L., Rech, B., Lips, K., Rohrmüller, M., Rauls, E., Schmidt, W.G., Gerstmann, U.: Atomic structure of interface states in silicon heterojunction solar cells. Phys. Rev. Lett. 110, 136803 (2013)

    Article  Google Scholar 

  9. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  10. Godby, R.W., Schlüter, M., Sham, L.J.: Self-energy operators and exchange-correlation potentials in semiconductors. Phys. Rev. B 37, 10159–10175 (1988)

    Article  Google Scholar 

  11. Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996)

    Article  Google Scholar 

  12. Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998)

    Article  Google Scholar 

  13. Hedin, L.: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)

    Article  Google Scholar 

  14. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  15. Hybertsen, M.S., Louie, S.G.: Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)

    Article  Google Scholar 

  16. Hybertsen, M.S., Louie, S.G.: First-principles theory of quasiparticles: calculation of Band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421 (1985)

    Article  Google Scholar 

  17. Jarolimek, K., de Groot, R.A., de Wijs, G.A., Zeman, M.: First-principles study of hydrogenated amorphous silicon. Phys. Rev. B 79, 155206 (2009)

    Article  Google Scholar 

  18. Johlin, E., Wagner, L.K., Buonassisi, T., Grossman, J.C.: Origins of structural hole traps in hydrogenated amorphous silicon. Phys. Rev. Lett. 110, 146805 (2013)

    Article  Google Scholar 

  19. Jülich Supercomputing Centre: JURECA: general-purpose supercomputer at Jülich supercomputing centre. J. Large-Scale Res. Facil. 2, A62 (2016)

    Google Scholar 

  20. Kaneka Corporation. http://www.kaneka.co.jp/kaneka-e/images/topics/1473811995/1473811995_101.pdf

  21. Khomyakov, P.A., Andreoni, W., Afify, N.D., Curioni, A.: Large-scale simulations of \(\alpha \)-Si: H: the origin of midgap states revisited. Phys. Rev. Lett. 107, 255502 (2011)

    Article  Google Scholar 

  22. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  23. Krack, M.: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theoret. Chem. Acc. 114(1), 145–152 (2005)

    Article  Google Scholar 

  24. Larson, P., Dvorak, M., Wu, Z.: Role of the plasmon-pole model in the GW approximation. Phys. Rev. B 88, 125205 (2013)

    Article  Google Scholar 

  25. Lundqvist, B.I.: Single-particle spectrum of the degenerate electron gas. Physik der Kondensierten Materie 6(3), 193–205 (1967)

    Google Scholar 

  26. Nolan, M., Legesse, M., Fagas, G.: Surface orientation effects in crystalline-amorphous silicon interfaces. Phys. Chem. Chem. Phys. 14, 15173 (2012)

    Article  Google Scholar 

  27. Overhauser, A.W.: Simplified theory of electron correlations in metals. Phys. Rev. B 3, 1888–1898 (1971)

    Article  Google Scholar 

  28. Perdew, J.P.: Density functional theory and the band gap problem. Int. J. Quantum Chem. 28(S19), 497–523 (1985)

    Article  Google Scholar 

  29. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  30. Ponti, G., Palombi, F., Abate, D., Ambrosino, F., Aprea, G., Bastianelli, T., Beone, F., Bertini, R., Bracco, G., Caporicci, M., Calosso, B., Chinnici, M., Colavincenzo, A., Cucurullo, A., Dangelo, P., Rosa, M.D., Michele, P.D., Funel, A., Furini, G., Giammattei, D., Giusepponi, S., Guadagni, R., Guarnieri, G., Italiano, A., Magagnino, S., Mariano, A., Mencuccini, G., Mercuri, C., Migliori, S., Ornelli, P., Pecoraro, S., Perozziello, A., Pierattini, S., Podda, S., Poggi, F., Quintiliani, A., Rocchi, A., Sció, C., Simoni, F., Vita, A.: The role of medium size facilities in the HPC ecosystem: the case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. In: 2014 International Conference on High Performance Computing Simulation (HPCS), pp. 1030–1033 (2014)

    Google Scholar 

  31. QuantumESPRESSO. http://www.quantum-espresso.org

  32. Savin, A., Jepsen, O., Flad, J., Andersen, O.K., Preuss, H., von Schnering, H.G.: Electron localization in solid-state structures of the elements: the diamond structure. Angew. Chem. Int. Ed. Engl. 31(2), 187–188 (1992)

    Article  Google Scholar 

  33. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  MATH  Google Scholar 

  34. VandeVondele, J., Hutter, J.: An efficient orbital transformation method for electronic structure calculations. J. Chem. Phys. 118(10), 4365–4369 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Commission Horizon 2020 research and innovation program under grant agreement No. 676629. The authors gratefully acknowledge the computing time granted on the supercomputer JURECA [19] at Jülich Supercomputing Centre (JSC) and on the supercomputer CRESCO [30] on the ENEA-GRID infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Czaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Czaja, P., Celino, M., Giusepponi, S., Gusso, M., Aeberhard, U. (2017). Ab Initio Description of Optoelectronic Properties at Defective Interfaces in Solar Cells. In: Di Napoli, E., Hermanns, MA., Iliev, H., Lintermann, A., Peyser, A. (eds) High-Performance Scientific Computing. JHPCS 2016. Lecture Notes in Computer Science(), vol 10164. Springer, Cham. https://doi.org/10.1007/978-3-319-53862-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53862-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53861-7

  • Online ISBN: 978-3-319-53862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics