Skip to main content

The Role of Bioenergy in Mitigating Climate Change

  • Chapter
  • First Online:
Carbon Sequestration for Climate Change Mitigation and Adaptation
  • 2598 Accesses

Abstract

The combustion of fossil fuels drive the steady increase in greenhouse gases (GHG) and global temperatures observed in recent decades. The realization of adverse effects of increase in GHG emissions on the environment, the desire to limit atmospheric CO2 concentration at 450 ppm or lower and limit global temperature increase to ≤2 °C, combined with increasing energy needs have made the quest for sustainable and environmentally benign sources of energy for industrial economies and consumer societies a high priority since 1980s. To limit atmospheric CO2 concentration at 450 ppm, a total CO2 emission reduction of 50–85% is required by 2050. As a result, there are a renewed interests in carbon-neutral or carbon-negative renewable energy sources. Among the renewable energy sources, biofuels are considered as an attractive fuel sources for replacing fossil fuels. Bioenergy is important for many sectors and mitigation perspectives as well as from the perspective of developmental goals such as energy security and rural development. It is argued that increasing the contribution of biofuels will reduce the GHG emission by reducing the carbon intensity of the transport sector and addressing energy security concerns. In addition to global climate change threat, interests in biofuels are enhanced by growing global energy demand and diminishing crude oil supply. However, there is concern about the existing interlink between biomass , bioenergy, land use, food supply, water use, and biodiversity. The first generation biofuels primarily produced from food crops feedstock are unsustainable due to the potential stress their production places on food, feed and fiber production. The second and third generation biofuels produced from abundant biomass and algae respectively are seen as the attractive solution to limitations of the first generation biofuels and also have higher potential for GHG emission mitigation. Yet, the practicalities of deployment of bioenergy at a large scale are mired in controversies over the potential resource conflicts that might occur, particularly over land, water and biodiversity. Additionally, a number of technical huddles must be overcome before their true potential can fully be realized and evaluated. This chapter summarizes the current knowledge of biofuels , the potential role in mitigating GHG emission, societal dilemma in large scale biofuel production, current assumptions on which global bioenergy resource estimates are predicted and future directions of biofuels research with the emphasis on assessments informed by empirical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdeshahian P, Dashti MG, Kalil MS, Yusoff WMW (2010) Production of biofuel using biomass as a sustainable biological resource. Biotechnology 9(3):274–282. doi:10.3923/biotech.2010.274.282

    Article  CAS  Google Scholar 

  • Abomohra AE, Jin WB, Tu RJ, Han SF, Eid M, Eladel H (2016) Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renew Sustain Energy Rev 64:596–606. doi:10.1016/j.rser.2016.06.056

    Article  CAS  Google Scholar 

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574. doi:10.1007/s10811-008-9384-7

    Article  CAS  Google Scholar 

  • Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17(3):675–691. doi:10.1890/05-2018

    Article  Google Scholar 

  • Akselsson C, Westling O, Sverdrup H, Holmqvist J, Thelin G, Uggla E, Malm G (2007) Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water Air Soil Pollut Focus 7(1–3):201–210. doi:10.1007/s11267-006-9106-6

    Article  CAS  Google Scholar 

  • An H, Wilhelm WE, Searcy SW (2011) Biofuel and petroleum-based fuel supply chain research: A literature review. Biomass Bioenergy 35(9):3763–3774. doi:10.1016/j.biombioe.2011.06.021

    Google Scholar 

  • Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH (2009) Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1(1):75–96. doi:10.1111/j.1757-1707.2008.01001.x

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42(2):159–166. doi:10.1002/bit.260420203

    Article  CAS  Google Scholar 

  • Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86(14–15):1679–1693. doi:10.1016/j.fuproc.2005.01.016

    Article  CAS  Google Scholar 

  • Arifeen N, Wang R, Kookos IK, Webb C, Koutinas AA (2007) Process design and optimization of novel wheat-based continuous bioethanol production system. Biotech Progress 23(6):1394–1403. doi:10.1021/bp0701517

    Article  CAS  Google Scholar 

  • Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefining 2(5):393–414. doi:10.1002/bbb.92

    Article  CAS  Google Scholar 

  • Bagi Z, Acs N, Balint B, Horvath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microb Biotech 76(2):473–482. doi:10.1007/s00253-007-1009-6

    Article  CAS  Google Scholar 

  • Balat M (2007) Global bio-fuel processing and production trends. Energy Explor Exploit 25(3):195–218. doi:10.1260/014459807782009204

    Article  CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875. doi:10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282. doi:10.1016/j.apenergy.2009.03.015

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energ Combust Sci 34(5):551–573. doi:10.1016/j.pecs.2007.11.001

    Article  CAS  Google Scholar 

  • Bauen A, Berndes G, Junginger M, Londo M, Ball R, Bole T, Chudzak C, Faaij A, Mozaffarian H (2009) Bioenergy—sustainable and reliable energy source. International Energy Agency (IEA), Paris, France 108 p

    Google Scholar 

  • Baumert KA, Hezbong TJP (2005) Navigating the numbers: greenhouse gas data and international climate policy. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Benbi DK, Brar JS (2009) A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron Sust Develop 29(2):257–265. doi:10.1051/agro/2008070

    Article  CAS  Google Scholar 

  • Bender MH (2000) Potential conservation of biomass in the production of synthetic organics. Res Conserv Recycl 30(1):49–58. doi:10.1016/s0921-3449(00)00045-8

    Article  Google Scholar 

  • Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3(4):299–312. doi:10.1111/j.1757-1707.2010.01088.x

    Article  CAS  Google Scholar 

  • Berndes G, Bird N, Cowie A (2011) Bioenergy, land use change and climate change mitigation. International Eenergy Agency (IEA Bioenergy), Paris, France 19 pp

    Google Scholar 

  • Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28. doi:10.1016/s0961-9534(02)00185-x

    Article  Google Scholar 

  • Bernton H, Kovarik B, Skylar S (1982) The forbiden fuel: power alcohol in the 20th century. B. Griffin, New York

    Google Scholar 

  • Bessou C, Ferchaud F, Gabrielle B, Mary B (2011) Biofuels, greenhouse gases and climate change. A review. Agron Sust Develop 31(1):1–79. doi:10.1051/agro/2009039

    Article  CAS  Google Scholar 

  • Blanco-Canqui H (2010) Energy crops and their implications on soil and environment. Agron J 102(2):403–419. doi:10.2134/agronj2009.0333

    Article  CAS  Google Scholar 

  • Bonin C, Lal R (2012) Agronomic and ecological implication of biofuels. Adv Agron 117:1–50. doi:10.1016/b978-0-12-394278-4.00001-5

    Article  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. doi:10.1039/b922014c

    Article  CAS  Google Scholar 

  • BP (2015) Statistical review: biofuels production. BP Global. On line at: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/biofuels-production.html

  • Braun R (2007) Anaerobic digestion: a multi-faceted process for energy, environment management and rural development. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Dordrecht, pp 335–415

    Chapter  Google Scholar 

  • Busche RM, Scott CD, Davidson BH, Lynd LR (1991) The ultimate ethanol: technoeconomic evaluation of ethanol manufacture comparing yeasts vs Zymommonas bacterium fermentations. Oak Ridge National Laboratory, Oak Ridge TN, U.S. Department of Energy, ORNL/TM-11852, 224 p

    Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA 96(11): 5952–5959. doi:10.1073/pnas.96.11.5952

  • Campbell JE, Lobell DB, Genova RC, Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42(15):5791–5794. doi:10.1021/es800052w

    Article  CAS  Google Scholar 

  • CARB (2015) California Air Resources Board. California Environmental Protection Agency Sacramento, CA. 10 p. On line at: https://arb.ca.gov/fuels/lcfs/lcfs_meetings/040115_pathway_ci_comparison.pdf. Accessed Nov 2016

  • Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresource Technol 98(12):2415–2457. doi:10.1016/j.biortech.2007.01.002

    Article  CAS  Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Molecular Sci 9(7):1342–1360. doi:10.3390/ijms9071342

    Article  CAS  Google Scholar 

  • Carlsson AS, van Beilen JB, Moller R, Clayton D (2007) Micro and macroalgae: utility for industrial applications. CPL Press, Newbury, UK 82 p

    Google Scholar 

  • Ceotto E (2008) Grasslands for bioenergy production. A review. Agron Sust Develop 28(1):47–55. doi:10.1051/agro:2007034

    Article  Google Scholar 

  • Chan C-X, Ho C-L, Phang S-M (2006) Trends in seaweed research. Trends Plant Sci 11(4):165–166. doi:10.1016/j.tplants.2006.02.003

    Article  CAS  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sustain Energy Rev 16(3):1462–1476. doi:10.1016/j.rser.2011.11.035

    Article  CAS  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Ren Energy 36(12):3541–3549. doi:10.1016/j.renene.2011.04.031

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421. doi:10.1016/j.enconman.2010.01.015

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  Google Scholar 

  • Christian DG, Riche AB (1998) Nitrate leaching losses under Miscanthus grass planted on a silty clay loam soil. Soil Use Manag 14(3):131–135

    Article  Google Scholar 

  • Christian DG, Poulton PR, Riche AB, Yates NE, Todd AD (2006) The recovery over several seasons of N15-labelled fertilizer applied to Miscanthus x giganteus ranging from 1 to 3 years old. Biomass Bioenergy 30(2): 125–133. doi:10.1016/j.biombioe.2005.11.002

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Eng AG, W. Lucht MM, Cerutti OM, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK and New York, USA, pp 216–330

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimmann M, Jones C, Quere CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stockler TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, U.K. and New York, USA, pp 465–570

    Google Scholar 

  • Cook J, Beyea J (2000) Bioenergy in the United States: progress and possibilities. Biomass Bioenergy 18(6):441–455. doi:10.1016/s0961-9534(00)00011-8

    Article  CAS  Google Scholar 

  • Creutzig F, Popp A, Plevin R, Luderer G, Minx J, Edenhofer O (2012) Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nature Clim Change 2(5):320–327. doi:10.1038/nclimate1416

    Article  Google Scholar 

  • Dahlgren G (1989) An updated angiosperm classification. Bot J Linneaus Soc 100(3):197–203. doi:10.1111/j.1095-8339.1989.tb01717.x

    Article  Google Scholar 

  • Dalgaard T, Jorgensen U, Olesen JE, Jensen ES, Kristensen ES (2006) Looking at biofuels and bioenergy. Science 312(5781):1743

    Article  CAS  Google Scholar 

  • Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14(3):140–146. doi:10.1016/j.tplants.2008.12.006

    Article  CAS  Google Scholar 

  • de Wit M, Faaij A (2010) European biomass resource potential and costs. Biomass Bioenergy 34(2):188–202. doi:10.1016/j.biombioe.2009.07.011

    Article  Google Scholar 

  • Debolt S, Campbell JE, Smith R Jr, Montross M, Stork J (2009) Life cycle assessment of native plants and marginal lands for bioenergy agriculture in Kentucky as a model for south-eastern USA. GCB Bioenergy 1(4):308–316. doi:10.1111/j.1757-1707.2009.01023.x

    Article  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378. doi:10.1016/s0196-8904(00)00137-0

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Recent progress in biorenewable feedstocks. Energy Edu Sci Technol 22(1):69–95

    CAS  Google Scholar 

  • Deusche Museum website, Web site www.deusche-museum.de/ausstell/meister/e_diesel.htm

  • Dhargalkar VK, Pereira N (2005) Seaweed: promising plant for the millenium. Sci Cult 71:60–66

    Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606. doi:10.1021/jf051851z

    Article  CAS  Google Scholar 

  • Ditomaso JM, Reaser JK, Dionigi CP, Doering OC, Chilton E, Schardt JD, Barney JN (2010) Biofuel vs bioinvasion: seeding policy priorities. Environ Sci Technol 44(18):6906–6910. doi:10.1021/es100640y

    Article  CAS  Google Scholar 

  • DOE (2005) Biomass as feedstock for a bioenergy and bioproducts of industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, U.S. Department of Energy (U.S. DOE), 59 pp

    Google Scholar 

  • DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda. US Department of Energy Office of Science and Energy Efficiency and Renewable Energy, DOE/SC-0095. http://www.doegenomicscience.energy.gov/biofuels/

  • DOE (2011) U.S. billion-ton update: biomass supply for a bioenergy and bioproducts industry. Oak Ridge National Laboratory, ORNL/TM-2011/224 Oak Ridge, TN, USA. http://www1.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf

  • DOE (2016a) Biodiesel handling and use guide. United States Department of Energy (U.S. DOE), Energy Efficiency & Renewable Energy, DOE/GO-102016–4875 Washington, D.C. 63 p. On line at http://www.afdc.energy.gov/uploads/publication/biodiesel_handling_use_guide.pdf

  • DOE (2016b) National algal biofuels technology review. Bioenergy Technologies Office, Office of Energy Efficiency and Renewable Energy, Biomass Program, U.S. Department of Energy, 190 p

    Google Scholar 

  • Dohleman FG, Heaton EA, Long SP (2010) Perennial grasses as second-generation sustainable feedstocks without conflict with food production. In: Khanna M, Scheffran J, Zilberman D (eds) Handbook of bioenergy economics and policy. Springer, New York, pp 27–37. doi:10.1007/978-1-4419-0369-3_3

  • Dornburg V, Faaij A, Verweij P, Langeveld H, van de Ven G, Wester F, van Diepen K, Meeusen M, Banse M, Ros J, van Vuuren D, van den Born GJ, van Oorschot M, Smout F, van Vliet J, Aiking H, Londo M, Mozaffarian H, Smekens K (2008) Assessment of global potential and their links to food, water, biodiversity energy demand economy. WAB 500102 012. The Netherland Environmental Assessment Agency, Bilthoven, The Netherlands. 108 pp

    Google Scholar 

  • Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, Ros J, van den Born GJ, Aiking H, Londo M, Mozaffarian H, Verweij P, Lysen E, Faaij A (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci 3(3):258–267. doi:10.1039/b922422j

    Article  Google Scholar 

  • El Bassam N (2010) Handbook of bioenergy crops: a complete reference to species: development and applications. Routledge, Earthscan, London, U.K.

    Google Scholar 

  • Erb KH, Haberl H, Krausmann F, Lauk C, Plutzar C, Steinberger JK, Muller C, Bondeau C, Pollack G (2009) Eating the planet: feeding and fueling the world sustainably, fairly and humanely—a scoping study. Potsdam Institute of Climate and Impact Research, Potsdam. https://www.ciwf.org.uk/includes/documents/cm_docs/2009/e/eating_the_planet_full_report_nov_2009.pdf

  • EU (2006) An European Union strategy for biofuels. Communication from the commission—Commission of European Communities. European Union, SEC(2006) 142 Brussels. 30 p. http://ec.europa.eu/energy/res/biomass_action_plan/doc/2006_02_08_comm_eu_strategy_en.pdf

  • FAO (2010) What wood fuels can do to mitigate climate change. FAO Forestry Paper 162. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2012) World agriculture towards 2030/2050. The 2012 revision, prospects for food, nutrition, agriculture and major commodity groups. Agricultural Economic Division, Food and Agricultural Organization of the UN, Rome, Italy. On line at: http://www.fao.org/economic/esa

  • FAOSTAT (2016) Food and Agriculture Organization statistical database. Online at: http://www.faostat.fao.orq/. Accessed October, 2016

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008a) Biofuels: putting current practices in perspective—response. Science 320(5882):1420–1422

    Article  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008b) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238. doi:10.1126/science.1152747

    Article  CAS  Google Scholar 

  • Farla J, Blok K, Schipper L (1997) Energy efficiency developments in the pulp and paper industry—a cross-country comparison using physical production data. Energy Policy 25(7–9):745–758. doi:10.1016/s0301-4215(97)00065-7

    Article  Google Scholar 

  • Fernandes SD, Trautmann NM, Streets DG, Roden CA, Bond TC (2007) Global biofuel use, 1850–2000. Global Biogeochem Cycles 21(2). doi:10.1029/2006gb002836

  • Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23(2):65–72. doi:10.1016/j.tree.2007.12.001

    Article  Google Scholar 

  • Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Ann Rev Environ Resour 32:1–29. doi:10.1146/annurev.energy.32.053006.141119

    Article  Google Scholar 

  • Fisher BS, Nakicenovic N, Alfsen K, Morlot JC, Chesnaye Fdl, Hourcade J-C, Jiang K, Kainuma M, Rovere EL, Matysek A, Rana A, Riahi K, Richels R, Rose S, Vuuren Dv, Warren R (2007) Issues related to mitigation in the long term context. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Fixen PE (2007) Potential biofuels influence on nutrient use and removal in the U.S. Better Crops 91:12–14

    Google Scholar 

  • Fulton L, Howes T, Hardy J (2004) Biofuels for transport. An international perspective. International Energy Agency, Office of Energy Efficiency, Technology and R&D, Paris, France

    Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499. doi:10.1016/j.biotechadv.2005.03.004

    Article  CAS  Google Scholar 

  • Ghosh D, Hallenbeck PC (2012) Advanced bioethanol production. Microbial technologies in advanced biofuel production, Springer, New York, USA

    Book  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800. doi:10.1016/j.biortech.2010.01.088

    Article  CAS  Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178(3):473–485. doi:10.1111/j.1469-8137.2008.02422.x

    Article  CAS  Google Scholar 

  • Goodrum JW, Geller DP (2005) Influence of fatty acid methyl esters from hydroxylated vegetable oils in diesel fuel lubricity. Bioresour Technol 96(7):851–855. doi:10.1016/j.biortech.2004.07.006

    Article  CAS  Google Scholar 

  • Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energ Combust Sci 24(2):125–164. doi:10.1016/s0360-1285(97)00034-8

    Article  CAS  Google Scholar 

  • Gurgel A, Reilly J, Paltsev S (2007) Potential land use implications of a global biofuels industry. J Agric Food Ind Organ 5(2):1202

    Google Scholar 

  • Haberl H, Beringer T, Bhattacharya SC, Erb K-H, Hoogwijk M (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr Opin Environ Sust 2(5–6):394–403. doi:10.1016/j.cosust.2010.10.007

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(31):12942–12945. doi:10.1073/pnas.0704243104

    Article  CAS  Google Scholar 

  • Hakala K, Kontturi M, Pahkala K (2009) Field biomass as global energy source. Agric Food Sci 18(3–4):347–365

    Google Scholar 

  • Harijan K, Memon M, Uqaili MA, Mirza UK (2009) Potential contribution of ethanol fuel to the transport sector of Pakistan. Renew Sustain Energy Rev 13(1):291–295. doi:10.1016/j.rser.2007.07.007

    Article  Google Scholar 

  • Hein KRG (2005) Future energy supply in Europe—challenge and chances. Fuel 84(10):1189–1194. doi:10.1016/j.fuel.2004.09.022

    Article  CAS  Google Scholar 

  • Hertel TW, Tyner WE, Birur DK (2010) The global impacts of biofuel mandates. Energy J 31(1):75–100

    Article  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210. doi:10.1073/pnas.0604600103

    Article  CAS  Google Scholar 

  • Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, Neumann J, Zheng H, Bonta D (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci USA 106(6):2077–2082. doi:10.1073/pnas.0812835106

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Hoogwijk M, Faaij A, de Vries B, Turkenburg W (2009) Exploration of regional and global cost-supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass Bioenergy 33(1):26–43. doi:10.1016/j.biombioe.2008.04.005

    Article  Google Scholar 

  • Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCCSRES land-use scenarios. Biomass Bioenergy 29(4):225–257. doi:10.1016/j.biombioe.2005.05.002

    Article  Google Scholar 

  • Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31(2–3):126–136. doi:10.1016/j.biombioe.2006.07.006

    Article  CAS  Google Scholar 

  • Huang W (2007) Impact of rising natural gas prices on US ammonia supply. United States Department of Agriculture (USDA), WRS-0702 Washington, D.C., 18 p. www.ers.usda.gov

  • IEA (2011) Technology roadmap: biofuels for transport. International Energy Agency (IEA), Renewable Energy Division, Paris, France, 52p. On line at: http://www.iea.org/publications

  • IEA (2016a) Key world energy statistics. International Energy Agency, Paris, France. http://www.iea.org/publications/freepublications/publication/KeyWorld2013.pdf Accessed May 2014

  • IEA (2016b) Renewables Information. Key renewables trends. OECD/International Energy Agency, Paris, France

    Google Scholar 

  • IEA (2016c) World energy outlook 2016. Global energy trends. OECD/International Energy Agency (IEA), Paris, France

    Google Scholar 

  • IPCC (2012) Renewable energy sources and climate change mitigation. Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 151 pp

    Google Scholar 

  • Johansson TB, Kelly H, Reddy AKN, Williams RH (1992) Renewable fuels and electricity for a growing world economy: Defining and achieving the potential. Energy Stud Rev 4(3):Article 6

    Google Scholar 

  • Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefining 1(2):119–134. doi:10.1002/bbb.4

    Article  CAS  Google Scholar 

  • Juan JC, Kartika DA, Wu TY, Hin T-YY (2011) Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol 102(2):452–460. doi:10.1016/j.biortech.2010.09.093

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microb Biotech 64(2):137–145. doi:10.1007/s00253-003-1537-7

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582. doi:10.1016/j.enzmictec.2005.09.015

    Article  CAS  Google Scholar 

  • Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179(1):15–32. doi:10.1111/j.1469-8137.2008.02432.x

    Article  Google Scholar 

  • Kaufmann RK (2004) The mechanisms for autonomous energy efficiency increases: a cointegration analysis of the US energy/GDP ratio. Energy J 25(1):63–86

    Article  Google Scholar 

  • Keyzer MA, Merbis MD, Voortman RL (2008) The biofuel controversy. Economics (Ned) 156(4):507–527. doi:10.1007/s10645-008-9098-x

    Google Scholar 

  • Khan SA, Rashmi Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13(9):2361–2372. doi:10.1016/j.rser.2009.04.005

    Article  CAS  Google Scholar 

  • Kim H, Kim S, Dale BE (2009) Biofuels, land use change, and greenhouse gas emissions: some unexplored variables. Environ Sci Technol 43(3):961–967. doi:10.1021/es802681k

    Article  CAS  Google Scholar 

  • Kline KL, Dale VH (2008) Biofuels: effects on land and fire. Science 321(5886):199. doi:10.1126/science.321.5886.199

    Article  CAS  Google Scholar 

  • Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. Inform 12:1103–1107

    Google Scholar 

  • Knothe G, Krahl J (2005) The biodiesel handbook. AOCS Publishing, Champaign, IL

    Book  Google Scholar 

  • Kraan S (2010) Mass cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strat Glob Change. doi:10.1007/s11027-010-9275-5

    Google Scholar 

  • Kraan S, Verges T, Guiry MD (2000) The edible brown seaweed Alaria esculenta: hybridization, growth and genetic comparisons of six Irish populations. J Appl Phycol 12:577–583

    Article  Google Scholar 

  • Kram JW (2007) Waste management commits to landfill gas expansion. Biomass Mag, BBI International, Issue 4 (Back to Basics) p 54

    Google Scholar 

  • Krausmann F, Erb KH, Gingrich S, Lauk C, Haberl H (2008) Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol Econ 65(3):471–487

    Article  Google Scholar 

  • Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefining 3(5):547–562. doi:10.1002/bbb.169

    Article  CAS  Google Scholar 

  • Lal R (2010) Managing soils for a warming earth in a food-insecure and energy-starved world. J Plant Nutr Soil Sci 173(1):4–15. doi:10.1002/jpln.200900290

    Article  CAS  Google Scholar 

  • Lammert MP, McCormick RL, Sindler P, Williams A (2012) Effect of B20 and low aromatic diesel on transit bus NOx emissions over driving cycles with a range of kinetic intensity. SAE Int J Fuels Lubr 5(3):1345–1359. doi:10.4271/2012-01-1984

    Article  CAS  Google Scholar 

  • Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 80(1):53–62. doi:10.1016/s0960-8524(01)00051-7

    Article  CAS  Google Scholar 

  • Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci USA 107(8):3388–3393. doi:10.1073/pnas.0907318107

    Article  CAS  Google Scholar 

  • Lauk C, Erb KH (2009) Biomass consumed in anthropogenic vegetation fires: global patterns and processes. Ecol Econ 69:301–318

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems: a review. Mitig Adapt Strat Glob Change 11:395–419

    Article  Google Scholar 

  • Levasseur A, Lesage P, Margni M, Deschenes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44(8):3169–3174. doi:10.1021/es9030003

    Article  CAS  Google Scholar 

  • Li M-F, Fan Y-M, Xu F, Sun R-C, Zhang X-L (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: characterization of the cellulose rich fraction. Ind Crop Prod 32(3):551–559. doi:10.1016/j.indcrop.2010.07.004

    Article  CAS  Google Scholar 

  • Love BJ, Einheuser MD, Nejadhashemi AP (2011) Effects on aquatic and human health due to large scale bioenergy crop expansion. Sci Total Environ 409(17):3215–3229. doi:10.1016/j.scitotenv.2011.05.007

    Article  CAS  Google Scholar 

  • Love BJ, Nejadhashemi AP (2011) Water quality impact assessment of large-scale biofuel crops expansion in agricultural regions of Michigan. Biomass Bioenergy 35(5):2200–2216. doi:10.1016/j.biombioe.2011.02.041

    Article  CAS  Google Scholar 

  • Luning K, Pang SJ (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15:115–119

    Article  Google Scholar 

  • Luo Z, Wang E, Sun OJ (2010) Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis. Geoderma 155(3–4):211–223. doi:10.1016/j.geoderma.2009.12.012

    Article  CAS  Google Scholar 

  • Ma FR, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15. doi:10.1016/s0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monor F (2009) New improvements in lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  CAS  Google Scholar 

  • Marland G (2008) Large-scale biomass for energy, with considerations and cautions: an editorial comment. Clim Change 87:335–342

    Article  Google Scholar 

  • Mathews JA (2007) Biofuels: what a biopact between North and South could achieve. Energy Policy 35(7):3550–3570. doi:10.1016/j.enpol.2007.02.011

    Article  Google Scholar 

  • Mathews JA, Tan H (2009) Biofuels and indirect land use change effects: the debate continues. Biofuels Bioprod Biorefining 3(3):305–317. doi:10.1002/bbb.147

    Article  CAS  Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. Food and Agriculture Organization of the United Nations, Rome, Italy 105 p

    Google Scholar 

  • McIsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in central illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39(5):1790–1799. doi:10.2134/jeq2009.0497

    Article  CAS  Google Scholar 

  • Meki MN, Atwood JD, Norfleet LM, Williams JR, Gerik TJ, Kiniry JR (2013) Corn residue removal effects on soybean yield and nitrogen dynamics in the Upper Mississippi River Basin. Agroecol Sust Food Syst 37(3):379–400. doi:10.1080/10440046.2012.724529

    Article  Google Scholar 

  • Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326(5958):1397–1399. doi:10.1126/science.1180251

    Article  CAS  Google Scholar 

  • Moomaw W, Yamba F, Kamimoto M, Maurice L, Nyboer J, Urama K, Weir T (2011) Renewable energy and climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 161–207

    Chapter  Google Scholar 

  • Mooney DF, Roberts RK, English BC, Tyler DD, Larson JA (2009) Yield and breakeven price of ‘Alamo’ switchgrass for biofuels in Tennessee. Agron J 101(5):1234–1242. doi:10.2134/agronj2009.0090

    Article  Google Scholar 

  • Morris D, Ahmed I (1992) The carbohydrate economy: making chemicals and industrial materials from plant matter. Institute for Self-Reliance, Washington, D.C., USA

    Google Scholar 

  • Murphy DJ (2012) Oil crops as potential sources of biofuels. In: Gupta SK (ed) Technological innovations in major world oil crops. Springer, New York, USA, pp 269–284

    Chapter  Google Scholar 

  • Murugesan A, Umarani C, Subramanian R, Nedunchezhian N (2009) Bio-diesel as an alternative fuel for diesel engines—a review. Renew Sustain Energy Rev 13(3):653–662. doi:10.1016/j.rser.2007.10.007

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: A comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  • Naylor RL, Liska AJ, Burke MB, Falcon WP, Gaskell JC, Rozelle SD, Cassman KG (2007) The ripple effect: biofuels, food security, and the environment. Environment 49(9):30–43. doi:10.3200/envt.49.9.30-43

    Article  Google Scholar 

  • Ng TL, Eheart JW, Cai X, Miguez F (2010) Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44(18):7138–7144. doi:10.1021/es9039677

    Article  CAS  Google Scholar 

  • Nicholls DL, Monserud RA, Dykstra DP (2008) Biomass utilization for bioenergy in the Western United States. For Prod J 58(1–2):6–16

    CAS  Google Scholar 

  • Nigam PS, Sigh A (2011) Production of liquid biofuels from renewable resources. Prog Energ Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Nitayavardhana S, Khanal SK (2012) Biofuel residues/waste: ban or boon. Crit Rev Environ Sci Technol 42:1–43

    Article  CAS  Google Scholar 

  • Notoya M (2010) Production of biofuel by Macroalgae with preservation of marine resources and environment. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their role in globally changing environments. Springer, the Netherlands, Dordrecht, pp 217–228. doi:10.1007/978-90-481-8569-6_13

  • OECD (2008) Economic assessment of biofuel support policies. Organization for Economic Development, OECD, Paris, France. www.oecd.org/tad/bioenergy

  • Ozkurt I (2009) Qualifying of safflower and algae for energy. Energy Edu Sci Techol-A 23(1–2):145–151

    CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24. doi:10.1016/s0960-8524(99)00160-1

    Article  CAS  Google Scholar 

  • Peteiro C, Freire O (2009) Effects of outplanting time on commercial cultivation of kelp Laminaria saccharina at the southern limit in Atlantic coast, N.W. Spain Chinese. J Oceanogr Limnol 27:54–60

    Google Scholar 

  • Pimentel D (2003) Ethanol fuels: energy balance, economics, and environmental impacts are negative. Nat Resour Res 12(2):127–134

    Article  Google Scholar 

  • Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis J, Krueger T (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37(1):1–12. doi:10.1007/s10745-009-9215-8

    Article  Google Scholar 

  • Radich A (2004) Biodiesel Performance, costs, and use. Analysis report. Energy Information Administration (EIA), US Department of Energy, Washington, D.C. 8 p

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489. doi:10.1126/science.1114736

    Article  CAS  Google Scholar 

  • Rajkumar R, Yaakob Z, Takriff MS (2013) Potential of micro and macro algae for biofuel production: a brief review. Bioresources 9(1):1606–1633

    Article  Google Scholar 

  • Ramos MJ, Fernandez GM, Casas A, Rodriguez I, Perez A (2009) Influence of fatty acid composition on raw materials on biodiesel properties. Bioresource Technol 100:261–268

    Article  CAS  Google Scholar 

  • REN21 (2014) Renewables 2014: Global status report. Renewable Energy Policy Network for the 21st century, Paris, France and Washington, D.C., 214 pp. On line at: http://www.ren21.net/portals/0/documents/resources/gsr/2014/gsr2014_full%20report_low%20res.pdf

  • Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Agriculture—Sustainable biofuels Redux. Science 322(5898):49–50. doi:10.1126/science.1161525

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padolvani G, Biondi N, Bonini G (2008) Microalgae for oil: strain selection, induction of lipid synthesis, and outdoor mass cultivation. Biotechnol Bioengn 102:100–112

    Article  CAS  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefining 1(2):147–157. doi:10.1002/bbb.15

    Article  CAS  Google Scholar 

  • Saballos A (2008) Develoment and utilization of sorghum as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, USA, pp 211–248

    Chapter  Google Scholar 

  • Schuck S (2006) Biomass as an energy source. Int J Environ Stud 63(6):823–835. doi:10.1080/00207230601047222

    Article  CAS  Google Scholar 

  • Schwab AW, Bagby MO, Freedman B (1987) Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–1378

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240. doi:10.1126/science.1151861

    Article  CAS  Google Scholar 

  • Service RF (2007) Biofuel researchers prepare to reap a new harvest. Science 315(5818):1488–1491. doi:10.2307/20035772

    Article  Google Scholar 

  • Shahid EM, Jamal Y (2008) A review of biodiesel as vehicular fuel. Renew Sustain Energy Rev 12(9):2484–2494. doi:10.1016/j.rser.2007.06.001

    Article  CAS  Google Scholar 

  • Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sustain Energy Rev 15(9):4732–4745. doi:10.1016/j.rser.2011.07.079

    Article  CAS  Google Scholar 

  • Sharrock KR (1988) Cellulase assay methods: a review. J Biochem Biophys Methods 17(2):81–105. doi:10.1016/0165-022x(88)90040-1

    Article  CAS  Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st- to 2nd-generation biofuel technologies. An overview of current industry and RD&D activities International Energy Agency (IEA), Paris, France, 120 p

    Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12(11):2054–2076. doi:10.1111/j.1365-2486.2006.01163.x

    Article  Google Scholar 

  • Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580. doi:10.1016/j.biortech.2009.11.046

    Article  CAS  Google Scholar 

  • Slade R, Bauen A, Gross R (2014) Global bioenergy resources. Nat Clim Change 4(2):99–105. doi:10.1038/nclimate2097

    Article  Google Scholar 

  • Smeets EMW, Faaij APC (2010) The impact of sustainability criteria on the costs and potentials of bioenergy production—applied for case studies in Brazil and Ukraine. Biomass Bioenergy 34(3):319–333. doi:10.1016/j.biombioe.2009.11.003

    Article  Google Scholar 

  • Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energ Combust Sci 33(1):56–106. doi:10.1016/j.pecs.2006.08.001

    Article  CAS  Google Scholar 

  • Smith AM (2001) The biosynthesis of starch granules. Biomacromolecules 2(2):335–341. doi:10.1021/bm000133c

    Article  CAS  Google Scholar 

  • Solomon BD (2010) Biofuels and sustainability. In: Limburg K, Costanza R (eds) Ecological economics reviews, vol 1185. Annals of the New York Academy of Sciences, pp 119–134

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi:10.1263/jbb.101.87

    Article  CAS  Google Scholar 

  • Srirangan K, Akawi L, Moo-Young M, Chou CP (2012) Towards sustainable production of clean energy carriers from biomass resources. Appl Energy 100:172–186. doi:10.1016/j.apenergy.2012.05.012

    Article  Google Scholar 

  • Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo JH, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res Atm 108 (D21). doi:10.1029/2002jd003093

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975. doi:10.1021/ja025790m

    Article  CAS  Google Scholar 

  • Taheripour F, Hertel TW, Tyner WE (2011) Implications of biofuels mandates for the global livestock industry: a computable general equilibrium analysis. Agric Econ 42(3):325–342. doi:10.1111/j.1574-0862.2010.00517.x

    Article  Google Scholar 

  • Task Force (2007) White paper on Internationally compartible biofuel standards. Tripartite Task Force—Brazil, European Union & United States of America, 93 p

    Google Scholar 

  • Thrian D, Seidenburger T, Zeddies I, Offermann R (2011) Global biomass potentials—resources drivers and scenario results. Energy Sour B 14:200–205

    Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–1600. doi:10.1126/science.1133306

    Article  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325(5938):270–271. doi:10.1126/science.1177970

    Article  CAS  Google Scholar 

  • Torney F, Moeller L, Scarpa A, Wang K (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18(3):193–199. doi:10.1016/j.copbio.2007.03.006

    Article  CAS  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next generation green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • U.N. (2015) World population prospects: 2015 revisions. United Nations Department of Economics, Population Division, ESA/P/WP.241 New York, 59 p. On Line at www.esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf

  • USDA (2014) Biogas opportunities roadmap. Voluntary actions to reduce methane emissions and increase energy independence. United States Department of Agriculture, U.S. Environmental Protection Agency, U.S. Department of Energy, Washington, D.C., 27 p

    Google Scholar 

  • van Vuuren DP, Bellevrat E, Kitous A, Isaac M (2010a) Bio-energy use and low stabilization scenarios. Energy J 31:193–221

    Google Scholar 

  • van Vuuren DP, Isaac M, den Elzen MGJ, Stehfest E, van Vliet J (2010b) Low stabilization scenarios and implications for major world regions from an integrated assessment perspective. Energy J 31:165–191

    Google Scholar 

  • van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37(11):4220–4230. doi:10.1016/j.enpol.2009.05.029

    Article  Google Scholar 

  • Volsky R, Smithhart RA (2011) A brief perspective on biomass for bioenergy and biofuels. J Tropical For Environ 1:1–13

    Google Scholar 

  • Walton J (1938) The fuel possibilities of vegetable oils. Gas Oil Power 33:167–168

    CAS  Google Scholar 

  • Wang Z, Dunn JB, Han J, Wang MQ (2014) Effects of co-produced biochar on life cycle greenhouse gas emissions of pyrolysis-derived renewable fuels. Biofuels Bioprod Biorefining 8(2):189–204. doi:10.1002/bbb.1447

    Article  CAS  Google Scholar 

  • WBGU (2009) Future bioenergy and sustainable land use. Euroscan

    Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microb Biotech 85(4):849–860. doi:10.1007/s00253-009-2246-7

    Article  CAS  Google Scholar 

  • Woolf D, Lehmann J, Fisher EM, Angenen LT (2014) Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environ Sci Technol 48(11):6492–6499. doi:10.1021/es500474q

    Article  CAS  Google Scholar 

  • Worldwatch Institute (2007) Biofuels for transport: global potential and implications for sustainable energy and agriculture. Earthscan, London, U.K.

    Google Scholar 

  • Wright MM, Brown RC, Boateng AA (2008) Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels Bioprod Biorefining 2(3):229–238. doi:10.1002/bbb.73

    Article  CAS  Google Scholar 

  • Wu Y, Liu S (2012) Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass Bioenergy 36:182–191. doi:10.1016/j.biombioe.2011.10.030

    Article  CAS  Google Scholar 

  • Wyman CE (2008) Cellulosic ethanol: a unique sustainable liquid transportation fuel. MRS Bull 33(4):381–383. doi:10.1557/mrs2008.77

    Article  CAS  Google Scholar 

  • Yevich R, Logan JA (2003) An assessment of biofuel use and burning of agricultural waste in the developing world. Glob Biogeochem Cycles 17(4). doi:10.1029/2002gb001952

  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crop Res 111(1–2):55–64. doi:10.1016/j.fcr.2008.10.006

    Article  Google Scholar 

  • Zhu L, Ketola T (2012) Microalgae production as a biofuel feedstock: risks and challenges. Int J Sustain Dev World Ecol 19(3):268–274. doi:10.1080/13504509.2011.636083

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A.N. Ussiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ussiri, D.A., Lal, R. (2017). The Role of Bioenergy in Mitigating Climate Change. In: Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-53845-7_12

Download citation

Publish with us

Policies and ethics