From 2D to 3D: A Case Study of NPR and Stereoscopic Cinema

  • Victor Fajnzylber
  • Milán MagdicsEmail author
  • Macarena Castillo
  • Constanza Ortega
  • Mateu Sbert
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9317)


Our interdisciplinary research is dedicated to exploring the boundaries of stereoscopic filmmaking from an unusual viewpoint: we aim at creating 3D non-photorealistic cinema which allows conciliating a stereoscopic pre-visualization that is oriented to ensure visual comfort with concept tests of NPR applied to a 3D film. In this paper we describe the role of pre-visualization in stereoscopic cinema and our preliminary observations and experience of combining 3D cinema with non-photorealistic rendering approaches, from the filmmakers’ point of view.


Non-photorealistic rendering Previsualization 2D and 3D cinema Visual comfort 



This work was sponsored by TIN2013-47276-C6-1-R from the Spanish Ministry of Economy and Competitiveness, and 2014SGR1232 from Catalan Government.


  1. 1.
    ANSES: 3D technologies and eyesight: use not recommended for children under the age of six, use in moderation for those under the age of 13. (2014). Accessed 05 Feb 2014
  2. 2.
    ANSES: French Agency for Food, Environmental and Occupational Health and Safety. (2014). Accessed 05 Feb 2014
  3. 3.
    Gooch, A.A., Willemsen, P.: Evaluating space perception in NPR immersive environments. In: NPAR, pp. 105–110 (2002)Google Scholar
  4. 4.
    Kim, Y., Lee, Y., Kang, H., Lee, S.: Stereoscopic 3D line drawing. ACM Trans. Graph. 32(4), 57:1–57:13 (2013)Google Scholar
  5. 5.
    Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: Proceedings of the EG UK Theory and Practice of Computer Graphics, pp. 51–58 (2008)Google Scholar
  6. 6.
    Lambooij, M., Fortuin, M., Heynderickx, I., IJsselsteijn, W.: Visual discomfort and visual fatigue of stereoscopic displays: a review. J. Imaging Sci. Technol. 53(3), 30201–1 (2009)CrossRefGoogle Scholar
  7. 7.
    Liu, C.W., Huang, T.H., Chang, M.H., Lee, K.Y., Liang, C.K., Chuang, Y.Y.: 3D cinematography principles and their applications to stereoscopic media processing. In: Proceedings of the 19th ACM International Conference on Multimedia, MM 2011, pp. 253–262. ACM, New York (2011)Google Scholar
  8. 8.
    Magdics, M., Sauvaget, C., Garcia, R., Sbert, M.: Post-processing NPR effects for video games. In: 12th ACM International Conference on Virtual Reality Continuum and Its Applications in Industry: VRCAI 2013, pp. 147–156 (2013)Google Scholar
  9. 9.
    McCloud, S.: Understanding Comics the Invisible Art. Harper Paperbacks, New York City (1994)Google Scholar
  10. 10.
    Northam, L., Asente, P., Kaplan, C.S.: Consistent stylization and painterly rendering of stereoscopic 3D images. In: Proceedings of the Symposium on Non-Photorealistic Animation and Rendering, NPAR 2012, pp. 47–56. Eurographics Association, Aire-la-Ville (2012)Google Scholar
  11. 11.
    Redmond, N., Dingliana, J.: Influencing user attention using real-time stylised rendering. In: Tang, W., Collomosse, J.P. (eds.) Proceedings of the EG UK Theory and Practice of Computer Graphics, Cardiff University, United Kingdom, pp. 173–180. Eurographics Association (2009)Google Scholar
  12. 12.
    Innoventive Software: Frameforge (2014). Accessed 05 Feb 2014
  13. 13.
    Stavrakis, E., Gelautz, M.: Image-based stereoscopic painterly rendering. In: Rendering Techniques 2004 (Proceedings of Eurographics Symposium on Rendering), pp. 53–60. Norrköping, Sweden, June 2004Google Scholar
  14. 14.
    Sun, G., Holliman, N.S.: Evaluating methods for controlling depth perception in stereoscopic cinematography. In: Woods, A.J., Holliman, N.S., Merritt, J.O. (eds.) Proceedings of SPIE Stereoscopic Displays and Applications XX, p. 72370I, vol. 7237. SPIE, Bellingham (2009)Google Scholar
  15. 15.
    Technologies Unity (2013).
  16. 16.
    Templin, K., Didyk, P., Myszkowski, K., Seidel, H.P.: Perceptually-motivated stereoscopic film grain. Comput. Graph. Forum 33(7), 349–358 (2014)CrossRefGoogle Scholar
  17. 17.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision, ICCV 1998. p. 839. IEEE Computer Society, Washington, DC (1998)Google Scholar
  18. 18.
    Ukai, K., Howarth, P.A.: Visual fatigue caused by viewing stereoscopic motion images: background, theories, and observations. Displays 29(2), 106–116 (2008). Health and Safety Aspects of Visual DisplaysCrossRefGoogle Scholar
  19. 19.
    Winnemöller, H.: Xdog: advanced image stylization with extended difference-of-gaussians. In: Collomosse, J.P., Asente, P., Spencer, S.N. (eds.) NPAR, pp. 147–156. ACM (2011)Google Scholar
  20. 20.
    Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. ACM Trans. Graph. 25(3), 1221–1226 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Victor Fajnzylber
    • 1
  • Milán Magdics
    • 2
    • 3
    Email author
  • Macarena Castillo
    • 1
  • Constanza Ortega
    • 1
  • Mateu Sbert
    • 2
  1. 1.University of ChileSantiagoChile
  2. 2.University of GironaGironaSpain
  3. 3.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations