Advertisement

Using Mutual Information for Exploring Optimal Light Source Placements

  • Yuki Ohtaka
  • Shigeo TakahashiEmail author
  • Hsiang-Yun Wu
  • Naoya Ohta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9317)

Abstract

Exploring optimal light sources for effectively rendering 3D scenes has been an important research theme especially in the application to computer graphics and visualization problems. Although conventional techniques provide visually plausible solutions to this problem, they did not seek meaningful correlations between proper light sources and their related attribute values. This paper presents an approach to exploring optimal light source placements by taking into account its correlations with such attribute values. Our idea lies in the novel combination of existing formulations by taking advantage of information theory. We first employ the quantized intensity level as the first attribute value together with the conventional illumination entropy so as to find the best light placement as that having the maximum mutual information. Meaningful relationships with viewpoints as the second attribute value are then studied by constructing a joint histogram of the rendered scenes, which is the quantized version of a 3D volume composed by the screen space and intensity levels. The feasibility of the proposed formulation is demonstrated through several experimental results together with simulation of illumination environments in a virtual spacecraft mission.

Keywords

Optimal light source placements Mutual information Joint histograms Scene perception 

Notes

Acknowledgement

This work has been partially supported by MEXT under Grants-in-Aid for Scientific Research on Innovative Areas No. 25120014, and JSPS under Grants-in-Aid for Scientific Research (B) No. 25287114.

References

  1. 1.
    Bordoloi, U.D., Shen, H.W.: View selection for volume rendering. In: Proceedings of IEEE Visualization 2005, Vis 2005, pp. 487–494. IEEE (2005)Google Scholar
  2. 2.
    Bramon, R., Ruiz, M., Bardera, A., Boada, I., Feixas, M., Sbert, M.: An information-theoretic observation channel for volume visualization. In: Computer Graphics Forum, vol. 32, no. 3pt4, pp. 411–420 (2013)Google Scholar
  3. 3.
    Demura, H., et al.: Pole and global shape of 25143 Itokawa. Science 312(5778), 1347–1349 (2006)CrossRefGoogle Scholar
  4. 4.
    Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. 6(1) (2009). Article No. 1Google Scholar
  5. 5.
    Gaskell, R., et al.: Landmark navigation studies and target characterization in the Hayabusa encounter with Itokawa. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2006)Google Scholar
  6. 6.
    González, F., Sbert, M., Feixas, M.: Viewpoint-based ambient occlusion. IEEE Comput. Graph. Appl. 28(2), 44–51 (2008)CrossRefGoogle Scholar
  7. 7.
    Gumhold, S.: Maximum entropy light source placement. In: Proceedings of IEEE Visualization 2002, Vis 2002, pp. 275–282. IEEE (2002)Google Scholar
  8. 8.
    Ha, H.N., Olivier, P.: Lighting-by-example with wavelets. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Owada, S. (eds.) SG 2007. LNCS, vol. 4569, pp. 110–123. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73214-3_10 CrossRefGoogle Scholar
  9. 9.
    Ji, G., Shen, H.W.: Dynamic view selection for time-varying volumes. IEEE Trans. Vis. Comput. Graph. 12(5), 1109–1116 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kahrs, J., Calahan, S., Carson, D., Poster, S.: Pixel cinematography: a lighting approach for computer graphics. In: SIGGRAPH Course Notes (1996)Google Scholar
  11. 11.
    Kim, Y., Varshney, A., Jacobs, D.W., Guimbretière, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. 7(2) (2010). Article No. 12Google Scholar
  12. 12.
    Lee, C.H., Hao, X., Varshney, A.: Geometry-dependent lighting. IEEE Trans. Vis. Comput. Graph. 12(2), 197–207 (2006)CrossRefGoogle Scholar
  13. 13.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)CrossRefGoogle Scholar
  14. 14.
    O’Shea, J.P., Banks, M.S., Agrawala, M.: The assumed light direction for perceiving shape from shading. In: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, APGV 2008, pp. 135–142 (2008)Google Scholar
  15. 15.
    Pellacini, F., Battaglia, F., Morley, R.K., Finkelstein, A.: Lighting with paint. ACM Trans. Graph. 26(2) (2007). Article No. 9Google Scholar
  16. 16.
    Polonsky, O., Patané, G., Biasotti, S., Gotsman, C., Spagnuolo, M.: What’s in an image? Vis. Comput. 21, 840–847 (2005)CrossRefGoogle Scholar
  17. 17.
    Secord, A., Lu, J., Finkelstein, A., Singh, M., Nealen, A.: Perceptual models of viewpoint preference. ACM Trans. Graph. 30(5) (2012). Article No. 109Google Scholar
  18. 18.
    Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: A feature-driven approach to locating optimal viewpoints for volume visualization. In: Proceedings of IEEE Visualization 2005, Vis 2005, pp. 495–502. IEEE (2005)Google Scholar
  19. 19.
    Tao, Y., Lin, H., Bao, H., Dong, F., Clapworthy, G.: Structure-aware viewpoint selection for volume visualization. In: Proceedings of the 2nd IEEE Pacific Visualization Symposium, Pacific Vis 2009, pp. 193–200. IEEE (2009)Google Scholar
  20. 20.
    Vázquez, P.P.: Automatic view selection through depth-based view stability analysis. Vis. Comput. 25, 441–449 (2009)CrossRefGoogle Scholar
  21. 21.
    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of 6th International Fall Workshop on Vision, Modeling, and Visualization, VMV2001, pp. 273–280 (2001)Google Scholar
  22. 22.
    Vázquez, P.-P., Sbert, M.: Perception-based illumination information measurement and light source placement. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 306–316. Springer, Heidelberg (2003). doi: 10.1007/3-540-44842-X_32 CrossRefGoogle Scholar
  23. 23.
    Vieira, T., Bordignon, A., Peixoto, A., Tavares, G., Lopes, H., Velho, L., Lewiner, T.: Learning good views through intelligent galleries. Comput. Graph. Forum 28(2), 717–726 (2009)CrossRefGoogle Scholar
  24. 24.
    Wang, L., Kaufman, A.E.: Lighting system for visual perception enhancement in volume rendering. IEEE Trans. Vis. Comput. Graph. 19(1), 67–80 (2013)CrossRefGoogle Scholar
  25. 25.
    Yamauchi, H., et al.: Towards stable and salient multi-view representation of 3D shapes. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, SMI 2006, pp. 265–270 (2006)Google Scholar
  26. 26.
    Zhang, Y., Ma, K.L.: Lighting design for globally illuminated volume rendering. IEEE Trans. Vis. Comput. Graph. 19(12), 2946–2955 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuki Ohtaka
    • 1
  • Shigeo Takahashi
    • 2
    Email author
  • Hsiang-Yun Wu
    • 3
  • Naoya Ohta
    • 4
  1. 1.The University of TokyoChibaJapan
  2. 2.University of AizuFukushimaJapan
  3. 3.Keio UniversityMinatoJapan
  4. 4.Gunma UniversityMaebashiJapan

Personalised recommendations