Advertisement

The Performance Analysis of Low-Resolution Paintings for Computational Aesthetics

  • Juan Zhu
  • Yuan yuan PuEmail author
  • Dan Xu
  • Wen hua Qian
  • Li qing Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9317)

Abstract

In the study of computational aesthetics, we always use high-resolution paintings to analyze painting style, but actually the paintings we obtain mostly are low-resolution. In this paper, the contrast experiments based on sparse coding are carried out between high and low resolution paintings. Different features are extracted in frequency domain and Gabor domain from the basis function of sparse coding (SC). Then the normalized mutual information (NMI) is figured out to analyze the effect of different features for painting style. At last, the features with better performance are used to classify the paintings’ style. The results of experiments show that, to a certain extent, the features extracted from low-resolution paintings still have the ability to characterize the painting style, among which the Gabor energy has the best effect in the painting style analysis.

Keywords

Computational aesthetics Image resolution Sparse coding Feature extraction Normalized mutual information 

Notes

Acknowledgment

It is a project supported by Natural Science Foundation of P.R. China (No. 61271361, 61263048, 61163019, 61462093), the Research Foundation of Yunnan Province (2014FA021, 2014FB113), and Digital Media Technology Key Laboratory of Universities in Yunnan.

References

  1. 1.
    Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1933)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hoenig, F.: Defining computational aesthetics. In: Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 13–18. Eurographics Association (2005)Google Scholar
  3. 3.
    Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 255–293. Springer, Berlin (2012)CrossRefGoogle Scholar
  4. 4.
    Rigau, J., Feixas, M., Sbert, M.: Image information in digital photography. In: Koch, R., Huang, F. (eds.) ACCV 2010. LNCS, vol. 6469, pp. 122–131. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22819-3_13 CrossRefGoogle Scholar
  5. 5.
    Rigau, J., Feixas, M., Sbert, M., et al.: Toward Auvers period: evolution of Van Gogh’s style. In: Proceedings of the Sixth International Conference on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 99–106. Eurographics Association (2010)Google Scholar
  6. 6.
    Feixas, M., Bardera, A., Rigau, J., et al.: Information theory tools for image processing. Synth. Lect. Comput. Graph. Animat. 6(1), 1–164 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Graham, D.J., Friedenberg, J.D., Rockmore, D.N., et al.: Mapping the similarity space of paintings: image statistics and visual perception. Vis. Cogn. 18(4), 559–573 (2010)CrossRefGoogle Scholar
  8. 8.
    Taylor, R.P., Micolich, A.P., Jonas, D.: Fractal analysis of Pollock’s drip paintings. Nature 399(6735), 422 (1999)CrossRefGoogle Scholar
  9. 9.
    Claro, A., Melo, M.J., de Melo, J.S.S., et al.: Identification of red colorants in Van Gogh paintings and ancient Andean textiles by microspectrofluorimetry. J. Cult. Herit. 11(1), 27–34 (2010)CrossRefGoogle Scholar
  10. 10.
    Donoho, D.L., Flesia, A.G.: Can recent innovations in harmonic analysis ‘explain’ key findings in natural image statistics? Netw.: Comput. Neural Syst. 12(3), 371–393 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Berezhnoy, I., Postma, E., Herik, D.: Digital analysis of Van Gogh’s complementary colours. In: Proceedings of 16th Belgian-Dutch Conference on Artificial Intelligence, (BNAIC 2004), pp. 163–170 (2004)Google Scholar
  12. 12.
    Jafarpour, S., et al.: Stylistic analysis of paintings using wavelets and machine learning. In: European Signal Processing Conference (2009)Google Scholar
  13. 13.
    Rigau, J., Feixas, M., Sbert, M.: Informational aesthetics measures. IEEE Comput. Graph. Appl. 28(2), 24–34 (2008)CrossRefGoogle Scholar
  14. 14.
    Hughes, J.M., Graham, D.J., Rockmore, D.N.: Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder. Proc. Natl. Acad. Sci. 107(4), 1279–1283 (2010)CrossRefGoogle Scholar
  15. 15.
    Hughes, J.M., Graham, D.J., Jacobsen, C.R., et al.: Comparing higher-order spatial statistics and perceptual judgments in the stylometric analysis of art. In: EUSIPCO-2011, pp. 1244–1248 (2011)Google Scholar
  16. 16.
    Liu, Y., Pu, Y., Xu, D.: Computer analysis for visual art style. In: SIGGRAPH Asia 2013 Technical Briefs, p. 9. ACM (2013)Google Scholar
  17. 17.
    Liu, Y., Pu, Y., Xu, D., Ren, Y.: Digital analysis for Van Gogh’s paintings. J. Syst. Simul. 27(4), 779–785 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan Zhu
    • 1
  • Yuan yuan Pu
    • 1
    • 2
    Email author
  • Dan Xu
    • 1
    • 2
  • Wen hua Qian
    • 1
  • Li qing Wang
    • 2
  1. 1.School of Information Science and EngineeringYunnan UniversityKunmingChina
  2. 2.Digital Media Technology Key Laboratory of Universities in YunnanYunnan UniversityKunmingChina

Personalised recommendations